Back to Journals » Vascular Health and Risk Management » Volume 15

Biomarkers in acute myocardial infarction: current perspectives

Authors Aydin S, Ugur K, Aydin S, Sahin İ, Yardim M

Received 2 November 2018

Accepted for publication 14 December 2018

Published 17 January 2019 Volume 2019:15 Pages 1—10


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Magnus Bäck

Suleyman Aydin,1 Kader Ugur,2 Suna Aydin,3 İbrahim Sahin,1,4 Meltem Yardim1

1Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, Elazig 23119, Turkey; 2Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, Elazig 23119, Turkey; 3Cardiovascular Surgery Department, Elazig Research and Education Hospital, Health Science University, Elazig 23119, Turkey; 4Department of Medical Biology, Medical School, Erzincan Binali Yildirim University, Erzincan 24100, Turkey

Purpose: Acute myocardial infarction (AMI) is the most common cause of death in the world. Comprehensive risk assessment of patients presenting with chest pain and eliminating undesirable results should decrease morbidity and mortality rates, increase the quality of life of patients, and decrease health expenditure in many countries. In this study, the advantages and disadvantages of the enzymatic and nonenzymatic biomarkers used in the diagnosis of patients with AMI are given in historical sequence, and some candidate biomarkers – hFABP, GPBB, S100, PAPP-A, RP, TNF, IL6, IL18, CD40 ligand, MPO, MMP9, cell-adhesion molecules, oxidized LDL, glutathione, homocysteine, fibrinogen, and D-dimer procalcitonin – with a possible role in the diagnosis of AMI are discussed.
Methods: The present study was carried out using meta-analyses, reviews of clinical trials, evidence-based medicine, and guidelines indexed in PubMed and Web of Science.
Results: These numerous AMI biomarkers guide clinical applications (diagnostic methods, risk stratification, and treatment). Today, however, TnI remains the gold standard for the diagnosis of AMI. Details in the text will be given of many biomarkers for the diagnosis of AMI.
Conclusion: We evaluated the advantages and disadvantages of routine enzymatic and nonenzymatic biomarkers and the literature evidence of other candidate biomarkers in the diagnosis of AMI, and discuss challenges and constraints that limit translational use from bench to bedside.

Keywords: acute myocardial infarction, cardiac protein, cardiac peptide

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]