Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts

Authors Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzolai B, Mattoli V, Ngo-Anh TJ, Ciofani G

Received 24 October 2014

Accepted for publication 22 November 2014

Published 8 January 2015 Volume 2015:10(1) Pages 433—445


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Prof. Dr. Thomas J Webster

Antonella Rocca,1,2 Attilio Marino,1,2 Veronica Rocca,3 Stefania Moscato,4 Giuseppe de Vito,5,6 Vincenzo Piazza,5 Barbara Mazzolai,1 Virgilio Mattoli,1 Thu Jennifer Ngo-Anh,7 Gianni Ciofani1

1Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Pontedera, Italy, 2Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy, 3Università di Pisa, Dipartimento di Ingegneria dell’Informazione, Pisa, Italy, 4Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy, 5Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy, 6Scuola Normale Superiore, NEST, Pisa, Italy, 7Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands

Background: Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs) is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs).
Materials and methods: In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs) on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting.
Results: Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial increment of NP uptake. Taken together, our findings suggest a synergistic effect of hypergravity and BTNPs in the enhancement of the osteogenic differentiation of MSCs.
Conclusion: The obtained results could become useful in the design of new approaches in bone-tissue engineering, as well as for in vitro drug-delivery strategies where an increment of nanocarrier internalization could result in a higher drug uptake by cell and/or tissue constructs.

Keywords: mesenchymal stem cells, hypergravity, barium titanate nanoparticles, osteogenesis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other articles by this author:

Pilot in vivo toxicological investigation of boron nitride nanotubes

Ciofani G, Danti S, Genchi GG, D’Alessandro D, Pellequer JL, Odorico M, Mattoli V, Giorgi M

International Journal of Nanomedicine 2012, 7:19-24

Published Date: 4 January 2012

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010