Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3

Authors Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M

Received 17 June 2013

Accepted for publication 20 July 2013

Published 6 November 2013 Volume 2013:8(1) Pages 4303—4314

DOI https://doi.org/10.2147/IJN.S50070

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Swapnil Gaikwad,1 Avinash Ingle,1 Aniket Gade,1 Mahendra Rai,1 Annarita Falanga,3 Novella Incoronato,2 Luigi Russo,2 Stefania Galdiero,3 Massimilano Galdiero2

1Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India; 2Department of Experimental Medicine, Division of Microbiology, II University of Naples, 3Department of Pharmacy, University of Naples “Federico II”, DFM and Institute of Biostructures and Bioimages, Naples, Italy

Abstract: The interaction between silver nanoparticles and viruses is attracting great interest due to the potential antiviral activity of these particles, and is the subject of much research effort in the treatment of infectious diseases. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with herpes simplex virus types 1 and 2 and with human parainfluenza virus type 3. We show that production of silver nanoparticles from different fungi is feasible, and their antiviral activity is dependent on the production system used. Silver nanoparticles are capable of reducing viral infectivity, probably by blocking interaction of the virus with the cell, which might depend on the size and zeta potential of the silver nanoparticles. Smaller-sized nanoparticles were able to inhibit the infectivity of the viruses analyzed.

Keywords: silver nanoparticles, antiviral, herpes simplex virus, parainfluenza virus

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625

Galdiero E, Falanga A, Siciliano A, Maselli V, Guida M, Carotenuto R, Tussellino M, Lombardi L, Benvenuto G, Galdiero S

International Journal of Nanomedicine 2017, 12:2717-2731

Published Date: 4 April 2017

Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood–brain barrier in rats

Valiante S, Falanga A, Cigliano L, Iachetta G, Busiello RA, La Marca V, Galdiero M, Lombardi A, Galdiero S

International Journal of Nanomedicine 2015, 10:1885-1898

Published Date: 10 March 2015

Peptides complementary to the active loop of porin P2 from Haemophilus influenzae modulate its activity

Cantisani M, Vitiello M, Falanga A, Finamore E, Galdiero M, Galdiero S

International Journal of Nanomedicine 2012, 7:2361-2371

Published Date: 11 May 2012

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel

He Y, Du ZY, Lv HB, Jia QF, Tang ZK, Zheng X, Zhang K, Zhao FH

International Journal of Nanomedicine 2013, 8:1809-1815

Published Date: 7 May 2013

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010