Back to Journals » Clinical Interventions in Aging » Volume 10

A pilot randomized controlled trial using EEG-based brain–computer interface training for a Chinese-speaking group of healthy elderly

Authors Lee TS, Quek SY, Goh SJA, Phillips R, Guan C, Cheung YB, Feng L, Wang CC, Chin ZY, Zhang H, Lee J, Ng TP, Krishnan KRR

Received 8 September 2014

Accepted for publication 14 November 2014

Published 9 January 2015 Volume 2015:10 Pages 217—227

DOI https://doi.org/10.2147/CIA.S73955

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Richard Walker

Tih-Shih Lee,1 Shin Yi Quek,1 Siau Juinn Alexa Goh,1 Rachel Phillips,2 Cuntai Guan,3 Yin Bun Cheung,4 Lei Feng,5 Chuan Chu Wang,3 Zheng Yang Chin,3 Haihong Zhang,3 Jimmy Lee,6 Tze Pin Ng,5 K Ranga Rama Krishnan1

1Department of Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore; 2Singapore Clinical Research Institute, Singapore; 3Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore; 4Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore; 5Department of Psychological Medicine, National University of Singapore, Singapore; 6Department of General Psychiatry/Department of Research, Institute of Mental Health, Singapore

Background: There is growing evidence that cognitive training (CT) can improve the cognitive functioning of the elderly. CT may be influenced by cultural and linguistic factors, but research examining CT programs has mostly been conducted on Western populations. We have developed an innovative electroencephalography (EEG)-based brain–computer interface (BCI) CT program that has shown preliminary efficacy in improving cognition in 32 healthy English-speaking elderly adults in Singapore. In this second pilot trial, we examine the acceptability, safety, and preliminary efficacy of our BCI CT program in healthy Chinese-speaking Singaporean elderly.
Methods: Thirty-nine elderly participants were randomized into intervention (n=21) and waitlist control (n=18) arms. Intervention consisted of 24 half-hour sessions with our BCI-based CT training system to be completed in 8 weeks; the control arm received the same intervention after an initial 8-week waiting period. At the end of the training, a usability and acceptability questionnaire was administered. Efficacy was measured using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), which was translated and culturally adapted for the Chinese-speaking local population. Users were asked about any adverse events experienced after each session as a safety measure.
Results: The training was deemed easily usable and acceptable by senior users. The median difference in the change scores pre- and post-training of the modified RBANS total score was 8.0 (95% confidence interval [CI]: 0.0–16.0, P=0.042) higher in the intervention arm than waitlist control, while the mean difference was 9.0 (95% CI: 1.7–16.2, P=0.017). Ten (30.3%) participants reported a total of 16 adverse events – all of which were graded “mild” except for one graded “moderate”.
Conclusion: Our BCI training system shows potential in improving cognition in both English- and Chinese-speaking elderly, and deserves further evaluation in a Phase III trial. Overall, participants responded positively on the usability and acceptability questionnaire.

Keywords: cognitive training, neuro-feedback, memory, attention

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010