Back to Journals » Clinical Interventions in Aging » Volume 14

A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment

Authors Jirayucharoensak S, Israsena P, Pan-ngum S, Hemrungrojn S, Maes M

Received 28 September 2018

Accepted for publication 30 December 2018

Published 19 February 2019 Volume 2019:14 Pages 347—360

DOI https://doi.org/10.2147/CIA.S189047

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Amy Norman

Peer reviewer comments 3

Editor who approved publication: Dr Richard Walker


Suwicha Jirayucharoensak,1,2 Pasin Israsena,1 Setha Pan-ngum,2 Solaphat Hemrungrojn,3 Michael Maes3

1Neural Signal Processing Research Team, Artificial Intelligence Research Unit, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand; 2Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; 3Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Introduction: This study examines the clinical efficacy of a game-based neurofeedback training (NFT) system to enhance cognitive performance in patients with amnestic mild cognitive impairment (aMCI) and healthy elderly subjects. The NFT system includes five games designed to improve attention span and cognitive performance. The system estimates attention levels by investigating the power spectrum of Beta and Alpha bands.
Methods: We recruited 65 women with aMCI and 54 healthy elderly women. All participants were treated with care as usual (CAU); 58 were treated with CAU + NFT (20 sessions of 30 minutes each, 2–3 sessions per week), 36 with CAU + exergame-based training, while 25 patients had only CAU. Cognitive functions were assessed using the Cambridge Neuropsychological Test Automated Battery both before and after treatment.
Results: NFT significantly improved rapid visual processing and spatial working memory (SWM), including strategy, when compared with exergame training and no active treatment. aMCI was characterized by impairments in SWM (including strategy), pattern recognition memory, and delayed matching to samples.
Conclusion: In conclusion, treatment with NFT improves sustained attention and SWM. Nevertheless, NFT had no significant effect on pattern recognition memory and short-term visual memory, which are the other hallmarks of aMCI. The NFT system used here may selectively improve sustained attention, strategy, and executive functions, but not other cognitive impairments, which characterize aMCI in women.

Keywords: amnestic mild cognitive impairment, neurofeedback, cognition, executive functions, aging, serious gaming, brain–computer interface

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]