Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Portable microfluidic chip for detection of Escherichia coli in produce and blood

Authors Wang S, Inci F, Chaunzwa TL, Ramanujam A, Vasudevan A, Subramanian S, Ip AC, Sridharan B, Gurkan UA, Demirci U

Published Date May 2012 Volume 2012:7 Pages 2591—2600

DOI http://dx.doi.org/10.2147/IJN.S29629

Received 1 January 2012, Accepted 24 January 2012, Published 29 May 2012

ShuQi Wang,1* Fatih Inci,1* Tafadzwa L Chaunzwa,1 Ajay Ramanujam,1 Aishwarya Vasudevan,1 Sathya Subramanian,1 Alexander Chi Fai Ip,1 Banupriya Sridharan,1 Umut Atakan Gurkan,1 Utkan Demirci,1,2
1
Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, 2Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA,

*These authors contributed equally to this work

Abstract: Pathogenic agents can lead to severe clinical outcomes such as food poisoning, infection of open wounds, particularly in burn injuries and sepsis. Rapid detection of these pathogens can monitor these infections in a timely manner improving clinical outcomes. Conventional bacterial detection methods, such as agar plate culture or polymerase chain reaction, are time-consuming and dependent on complex and expensive instruments, which are not suitable for point-of-care (POC) settings. Therefore, there is an unmet need to develop a simple, rapid method for detection of pathogens such as Escherichia coli. Here, we present an immunobased microchip technology that can rapidly detect and quantify bacterial presence in various sources including physiologically relevant buffer solution (phosphate buffered saline [PBS]), blood, milk, and spinach. The microchip showed reliable capture of E. coli in PBS with an efficiency of 71.8% ± 5% at concentrations ranging from 50 to 4,000 CFUs/mL via lipopolysaccharide binding protein. The limits of detection of the microchip for PBS, blood, milk, and spinach samples were 50, 50, 50, and 500 CFUs/mL, respectively. The presented technology can be broadly applied to other pathogens at the POC, enabling various applications including surveillance of food supply and monitoring of bacteriology in patients with burn wounds.

Keywords: Escherichia coli, microchip, sepsis, food safety, point-of-care

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Simple filter microchip for rapid separation of plasma and viruses from whole blood

Wang SQ, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U

International Journal of Nanomedicine 2012, 7:5019-5028

Published Date: 17 September 2012

Readers of this article also read:

Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes [Corrigendum]

Perez AP, Casasco A, Schilrreff P, Defain Tesoriero MV, Duempelmann L, Pappalardo JS, Altube MJ, Higa L, Morilla MJ, Petray P, Romero EL

International Journal of Nanomedicine 2015, 10:169-170

Published Date: 29 December 2014

Double-balloon tamponade in the management of postpartum hemorrhage: a case series

Kavak SB, Kavak EC, Demirel I, Ilhan R

Therapeutics and Clinical Risk Management 2014, 10:615-620

Published Date: 2 August 2014

Rate of ectasia and incidence of irregular topography in patients with unidentified preoperative risk factors undergoing femtosecond laser-assisted LASIK

Moshirfar M, Smedley JG, Muthappan V, Jarsted A, Ostler EM

Clinical Ophthalmology 2014, 8:35-42

Published Date: 10 December 2013

Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier

Hoff D, Sheikh L, Bhattacharya S, Nayar S, Webster TJ

International Journal of Nanomedicine 2013, 8:703-710

Published Date: 13 February 2013

Novel nanostructured biomaterials: implications for coronary stent thrombosis

Karagkiozaki V, Karagiannidis PG, Kalfagiannis N, Kavatzikidou P, Patsalas P, Georgiou D, Logothetidis S

International Journal of Nanomedicine 2012, 7:6063-6076

Published Date: 17 December 2012

Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier

Cheng G, He Y, Xie L, Nie Y, He B, Zhang Z, Gu Z

International Journal of Nanomedicine 2012, 7:3991-4006

Published Date: 31 July 2012

Therapeutic effect of bortezomib for primary plasma cell leukemia followed by auto/allo stem cell transplantation

Ozasa R, Hotta M, Yoshimura H, Nakanishi T, Tamaki T, Fujita S, Nakamichi N, Miyaji M, Ishii K, Ito T, Nomura S

International Medical Case Reports Journal 2012, 5:39-43

Published Date: 6 July 2012

An MRI-visible non-viral vector for targeted Bcl-2 siRNA delivery to neuroblastoma

Shen M, Gong FM, Pang PF, Zhu KS, Meng XC, Wu C, Wang J, Shan H, Shuai XT

International Journal of Nanomedicine 2012, 7:3319-3332

Published Date: 2 July 2012

Influence of demographic and metabolic variables on forearm blood flow and vascular conductance in individuals without overt heart disease

Thiago E Sartori, Rafael AB Nunes, Gisela T da Silva, et al

Vascular Health and Risk Management 2010, 6:431-437

Published Date: 31 May 2010