Back to Browse Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Low-visibility light-intensity laser-triggered release of entrapped calcein from 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine liposomes is mediated through a type I photoactivation pathway

Authors Yavlovich A, Viard M, Gupta K, Sine J, Vu M, Blumenthal R, Tata DB, Puri A

Published Date July 2013 Volume 2013:8(1) Pages 2575—2587


Received 9 March 2013, Accepted 14 April 2013, Published 22 July 2013

Amichai Yavlovich,1,* Mathias Viard,1,2,* Kshitij Gupta,1,* Jessica Sine,1,* Mylinh Vu,1 Robert Blumenthal,1 Darrell B Tata,3 Anu Puri1,*

1Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD, USA; 2Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA; 3Centre for Devices and Radiological Health (CDRH)/Office of Science and Engineering Laboratories(OSEL)/Division of Physics, US Food and Drug Administration, White Oak, MD, USA

*These authors contributed equally to this work

Abstract: We recently reported on the physical characteristics of photo-triggerable liposomes containing dipalmitoylphosphatidylcholine (DPPC), and 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) carrying a photo agent as their payload. When exposed to a low-intensity 514 nm wavelength (continuous-wave) laser light, these liposomes were observed to release entrapped calcein green (Cal-G; Ex/Em 490/517 nm) but not calcein blue (Cal-B; Ex/Em 360/460 nm). In this study, we have investigated the mechanism for the 514 nm laser-triggered release of the Cal-G payload using several scavengers that are known specifically to inhibit either type I or type II photoreaction pathways. Liposomes containing DPPC:DC8,9PC: distearoylphosphatidylethanolamine (DSPE)-polyethylene glycol (PEG)-2000 (86:10:04 mole ratio) were loaded either with fluorescent (calcein) or nonfluorescent (3H-inulin) aqueous markers. In addition, a non-photo-triggerable formulation (1-palmitoyl-2-oleoyl phosphatidylcholine [POPC]:DC8,9PC:DSPE-PEG2000) was also studied with the same payloads. The 514 nm wavelength laser exposure on photo-triggerable liposomes resulted in the release of Cal-G but not that of Cal-B or 3H-inulin, suggesting an involvement of a photoactivated state of Cal-G due to the 514 nm laser exposure. Upon 514 nm laser exposures, substantial hydrogen peroxide (H2O2, ≈100 µM) levels were detected from only the Cal-G loaded photo-triggerable liposomes but not from Cal-B-loaded liposomes (≤10 µM H2O2). The Cal-G release from photo-triggerable liposomes was found to be significantly inhibited by ascorbic acid (AA), resulting in a 70%–80% reduction in Cal-G release. The extent of AA-mediated inhibition of Cal-G release from the liposomes also correlated with the consumption of AA. No AA consumption was detected in the 514 nm laser-exposed Cal B-loaded liposomes, thus confirming a role of photoactivation of Cal-G in liposome destabilization. Inclusion of 100 mM K3Fe(CN)6 (a blocker of electron transfer) in the liposomes substantially inhibited Cal-G release, whereas inclusion of 10 mM sodium azide (a blocker of singlet oxygen of type II photoreaction) in the liposomes failed to block 514 nm laser-triggered Cal-G release. Taken together, we conclude that low-intensity 514 nm laser-triggered release of Cal-G from photo-triggerable liposomes involves the type I photoreaction pathway.

Keywords: visible laser-triggered payload release, photo-agents, photopolymerizable phospholipids, photodynamic actions, reactive oxygen species

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at:

Other article by this author:

Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

Sine J, Urban C, Thayer D, Charron H, Valim N, Tata DB, Schiff R, Blumenthal R, Joshi A, Puri A

International Journal of Nanomedicine 2015, 10:125-145

Published Date: 19 December 2014

Readers of this article also read:

Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KCW

International Journal of Nanomedicine 2015, 10:3315-3328

Published Date: 4 May 2015

Magnetic particle imaging: current developments and future directions

Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J

International Journal of Nanomedicine 2015, 10:3097-3114

Published Date: 22 April 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Vincristine sulfate liposomal injection for acute lymphoblastic leukemia

Soosay Raj TA, Smith AM, Moore AS

International Journal of Nanomedicine 2013, 8:4361-4369

Published Date: 6 November 2013

Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation

Kubiliūtė R, Maximova KA, Lajevardipour A, Yong J, Hartley JS, Mohsin ASM, Blandin P, Chon JWM, Sentis M, Stoddart PR, Kabashin A, Rotomskis R, Clayton AHA, Juodkazis S

International Journal of Nanomedicine 2013, 8:2601-2611

Published Date: 19 July 2013

Letter to the editor

Ralla B, Holtmann C, Geerling G

Clinical Ophthalmology 2013, 7:243-246

Published Date: 5 February 2013


Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP

International Journal of Nanomedicine 2012, 7:1709-1710

Published Date: 30 March 2012