Back to Browse Journals » International Journal of Nanomedicine » Volume 1 » Issue 1

Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo

Authors Saba Choudhary, Mikal Berhe, Karen M Haberstroh, Thomas J Webster

Published Date January 2006 Volume 2006:1(1) Pages 41—49

DOI

Published 25 January 2006

Saba Choudhary1, Mikal Berhe1, Karen M Haberstroh1, Thomas J Webster1,2

1Weldon School of Biomedical Engineering and 2School of Materials Engineering, Purdue University, West Lafayette, IN, USA
Abstract: In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micronsized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours’ adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.
Keywords: nanotechnology, metals, Ti, CoCrMo, vascular stents, endothelial cells, vascular smooth muscle cells

Download Article [PDF] 

Readers of this article also read:

Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KCW

International Journal of Nanomedicine 2015, 10:3315-3328

Published Date: 4 May 2015

Magnetic particle imaging: current developments and future directions

Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J

International Journal of Nanomedicine 2015, 10:3097-3114

Published Date: 22 April 2015

Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects

Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kamala-Kannan S, Kim JH

International Journal of Nanomedicine 2015, 10:1977-1983

Published Date: 11 March 2015

Development of an oral push–pull osmotic pump of fenofibrate-loaded mesoporous silica nanoparticles

Zhao Z, Wu C, Zhao Y, Hao Y, Liu Y, Zhao W

International Journal of Nanomedicine 2015, 10:1691-1701

Published Date: 3 March 2015

Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies

Wang Z, Mu HJ, Zhang XM, Ma PK, Lian SN, Zhang FP, Chu SY, Zhang WW, Wang AP, Wang WY, Sun KX

International Journal of Nanomedicine 2015, 10:633-644

Published Date: 14 January 2015

Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds

Kim BS, Park KE, Kim MH, You HK, Lee J, Park WH

International Journal of Nanomedicine 2015, 10:485-502

Published Date: 9 January 2015

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011