Back to Browse Journals » International Journal of Nanomedicine » Volume 5

Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes

Authors Alessandro Ruggiero, Carlos H Villa, Jason P Holland, et al

Published Date September 2010 Volume 2010:5 Pages 783—802

DOI http://dx.doi.org/10.2147/IJN.S13300

Published 30 September 2010

Alessandro Ruggiero1*, Carlos H Villa1*, Jason P Holland1, Shanna R Sprinkle1, Chad May2, Jason S Lewis1, David A Scheinberg1, Michael R McDevitt1
1Departments of Medicine and Radiology, Pharmacology and Molecular Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, USA; 2ImClone Systems, New York, USA; *Ruggiero and Villa contributed equally to this work

Abstract: Single wall carbon nanotube (SWCNT) constructs were covalently appended with radiometal-ion chelates (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA] or desferrioxamine B [DFO]) and the tumor neovascular-targeting antibody E4G10. The E4G10 antibody specifically targeted the monomeric vascular endothelial-cadherin (VE-cad) epitope expressed in the tumor angiogenic vessels. The construct specific activity and blood compartment clearance kinetics were significantly improved relative to corresponding antibody-alone constructs. We performed targeted radioimmunotherapy with a SWCNT-([225Ac]DOTA)(E4G10) construct directed at the tumor vasculature in a murine xenograft model of human colon adenocarcinoma (LS174T). The specific construct reduced tumor volume and improved median survival relative to controls. We also performed positron emission tomographic (PET) radioimmunoimaging of the tumor vessels with a SWCNT-([89Zr]DFO)(E4G10) construct in the same murine LS174T xenograft model and compared the results to appropriate controls. Dynamic and longitudinal PET imaging of LS174T tumor-bearing mice demonstrated rapid blood clearance (<1 hour) and specific tumor accumulation of the specific construct. Incorporation of the SWCNT scaffold into the construct design permitted us to amplify the specific activity to improve the signal-to-noise ratio without detrimentally impacting the immunoreactivity of the targeting antibody moiety. Furthermore, we were able to exploit the SWCNT pharmacokinetic (PK) profile to favorably alter the blood clearance and provide an advantage for rapid imaging. Near-infrared three-dimensional fluorescent-mediated tomography was used to image the LS174T tumor model, collect antibody-alone PK data, and calculate the number of copies of VE-cad epitope per cell. All of these studies were performed as a single administration of construct and were found to be safe and well tolerated by the murine model. These data have implications that support further imaging and radiotherapy studies using a SWCNT-based platform and focusing on the tumor vessels as the target.

Keywords: actinium-225 (225Ac), zirconium-89 (89Zr), angiogenesis, vascular endothelial-cadherin, radioimmunotherapy (RIT), radioimmunoPET

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Letter to the editor

Ralla B, Holtmann C, Geerling G

Clinical Ophthalmology 2013, 7:243-246

Published Date: 5 February 2013

Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL

Lian S, Xiao Y, Bian QQ, Xia Y, Guo CF, Wang SG, Lang MD

International Journal of Nanomedicine 2012, 7:4893-4905

Published Date: 12 September 2012

Targeted agents for the treatment of metastatic melanoma

Monzon JG, Dancey J

OncoTargets and Therapy 2012, 5:31-46

Published Date: 5 March 2012

Nanomedicine as an emerging approach against intracellular pathogens

Armstead AL, Li B

International Journal of Nanomedicine 2011, 6:3281-3293

Published Date: 9 December 2011

A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression

Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR

International Journal of Nanomedicine 2011, 6:2791-2798

Published Date: 8 November 2011

Effect of interaction of magnetic nanoparticles of Fe3O4 and artesunate on apoptosis of K562 cells

Wang Y, Han Y, Yang Y, Yang J, Guo X, Zhang J, Pan L, Xia G, Chen B

International Journal of Nanomedicine 2011, 6:1185-1192

Published Date: 9 June 2011

Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations

N Montazeri, R Jahandideh, Esmaeil Biazar

International Journal of Nanomedicine 2011, 6:197-201

Published Date: 28 January 2011

Does plasmin have anticoagulant activity?

Jane Hoover-Plow

Vascular Health and Risk Management 2010, 6:199-205

Published Date: 26 March 2010