Back to Browse Journals » Neuropsychiatric Disease and Treatment » Volume 4 » Issue 6

Neurosurgical strategies for Gilles de la Tourette’s syndrome

Authors Karim Mukhida, Matthew Bishop, Murray Hong, Ivar Mendez

Published Date September 2008 Volume 2008:4(6) Pages 1111—1128

DOI http://dx.doi.org/10.2147/NDT.S4160

Published 30 September 2008

Karim Mukhida1,2, Matthew Bishop2, Murray Hong2, Ivar Mendez2

1Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada; 2Departments, of Anatomy and Neurobiology and Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada

Abstract: Tourette’s syndrome (TS) is a neurological disorder characterized by motor and vocal tics that typically begin in childhood and often are accompanied by psychiatric comorbidities. Symptoms of TS may be socially disabling and cause secondary medical complications. Pharmacological therapies remain the mainstay of symptom management. For the subset of patients in whom TS symptoms are medically recalcitrant and do not dissipate by adulthood, neurosurgery may offer an alternative treatment strategy. Greater understanding of the neuroanatomic and pathophysiologic basis of TS has facilitated the development of surgical procedures that aim to ameliorate TS symptoms by lesions or deep brain stimulation of cerebral structures. Herein, the rationale for the surgical management of TS is discussed and neurosurgical experiences since the 1960s are reviewed. The necessity for neurosurgical strategies to be performed with appropriate ethical considerations is highlighted.

Keywords: tourette’s syndrome, neurosurgery, deep brain stimulation, thalamus

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

MRI-based identification of undifferentiated cells: looking at the two faces of Janus

Tomuleasa C, Florian IS, Berce C, Irimie A, Berindan-Neagoe I, Cucuianu A

International Journal of Nanomedicine 2014, 9:865-866

Published Date: 11 February 2014

Are calcifying microvesicles another analogous substructure of calcifying nanoparticles?

Atughonu TC, Arja SB, Shiekh FA

International Journal of Nanomedicine 2013, 8:4673-4676

Published Date: 5 December 2013

Tat peptide-decorated gelatin-siloxane nanoparticles for delivery of CGRP transgene in treatment of cerebral vasospasm [Corrigendum]

Tian XH, Wang ZG, Meng H, Wang YH, Feng W, Wei F, Huang ZC, Lin XN, Ren L

International Journal of Nanomedicine 2013, 8:2129-2130

Published Date: 13 June 2013

Letter to the editor

Ralla B, Holtmann C, Geerling G

Clinical Ophthalmology 2013, 7:243-246

Published Date: 5 February 2013

Do calcifying nanoparticles really contain 16S rDNA?

Shiekh FA

International Journal of Nanomedicine 2012, 7:5051-5052

Published Date: 18 September 2012

Corrigendum

Wu Q, Chu M

International Journal of Nanomedicine 2012, 7:4531-4532

Published Date: 15 August 2012

Corrigendum: Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

Espandar L, Sikder S, Moshirfar M

Clinical Ophthalmology 2011, 5:159-160

Published Date: 6 February 2011