Back to Journals » Drug Design, Development and Therapy » Volume 9

Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity

Authors Gozzi GJ, Bouaziz Z, Winter E, Daflon-Yunes N, Honorat M, Guragossian N, Marminon C, Valdameri G, Bollacke A, Guillon J, Pinaud N, Marchivie M, Cadena SM, Jose J, Le Borgne M, Di Pietro A

Received 19 March 2015

Accepted for publication 2 May 2015

Published 3 July 2015 Volume 2015:9 Pages 3481—3495


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Shu-Feng Zhou

Gustavo Jabor Gozzi,1,2 Zouhair Bouaziz,3 Evelyn Winter,1,4 Nathalia Daflon-Yunes,1 Mylène Honorat,1 Nathalie Guragossian,3 Christelle Marminon,3 Glaucio Valdameri,1,2 Andre Bollacke,5 Jean Guillon,6 Noël Pinaud,7 Mathieu Marchivie,8 Silvia M Cadena,2 Joachim Jose,5 Marc Le Borgne,3 Attilio Di Pietro1

Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France; 2Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; 3Faculty of Pharmacy – ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France; 4Department of Pharmaceutical Sciences, PGFAR, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; 5Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany; 6ARNA Laboratory, Pharmaceutical Sciences UFR, INSERM U869, University of Bordeaux, Bordeaux Cedex, France; 7ISM – CNRS UMR 5255, University of Bordeaux Cedex, France; 8ICMCB CNRS-UPR 9048, University of Bordeaux, Pessac Cedex, France

Abstract: Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N5-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.

Keywords: multidrug resistance, cancer cells, ABCG2/BCRP, indenoindole inhibitors, structure–activity relationships, ATPase activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]