Back to Journals » Drug Design, Development and Therapy » Volume 9

Nutrigenomic effects of edible bird’s nest on insulin signaling in ovariectomized rats

Authors Hou Z, Umar Imam M, Ismail M, Ooi DJ, Ideris A, Mahmud R

Received 11 January 2015

Accepted for publication 11 February 2015

Published 14 August 2015 Volume 2015:9 Pages 4115—4125


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Wei Duan

Zhiping Hou,1,2 Mustapha Umar Imam,1 Maznah Ismail,1,3 Der Jiun Ooi,1 Aini Ideris,4 Rozi Mahmud5

1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Pathology, Chengde Medical University, Chengde, People’s Republic of China; 3Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Malaysia; 4Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia; 5Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia

Abstract: Estrogen deficiency alters quality of life during menopause. Hormone replacement therapy has been used to improve quality of life and prevent complications, but side effects limit its use. In this study, we evaluated the use of edible bird’s nest (EBN) for prevention of cardiometabolic problems in rats with ovariectomy-induced menopause. Ovariectomized female rats were fed for 12 weeks with normal rat chow, EBN, or estrogen and compared with normal non-ovariectomized rats. Metabolic indices (insulin, estrogen, superoxide dismutase, malondialdehyde, oral glucose tolerance test, and lipid profile) were measured at the end of the experiment from serum and liver tissue homogenate, and transcriptional levels of hepatic insulin signaling genes were measured. The results showed that ovariectomy worsened metabolic indices and disrupted the normal transcriptional pattern of hepatic insulin signaling genes. EBN improved the metabolic indices and also produced transcriptional changes in hepatic insulin signaling genes that tended toward enhanced insulin sensitivity, and glucose and lipid homeostasis, even better than estrogen. The data suggest that EBN could meliorate estrogen deficiency-associated increase in risk of cardiometabolic disease in rats, and may in fact be useful as a functional food for the prevention of such a problem in humans. The clinical validity of these findings is worth studying further.

Keywords: ovariectomy, lipid metabolism, insulin resistance, antioxidant, aging

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]