Back to Journals » Drug Design, Development and Therapy » Volume 9

Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

Authors Hassan A, Hosny KM, Murshid Z, Alhadlaq A, Alyamani A, Naguib G

Received 24 December 2014

Accepted for publication 3 March 2015

Published 13 July 2015 Volume 2015:9 Pages 3599—3606


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Wei Duan

Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6

1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, 5Department of Oral Surgery, 6Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

Objective: The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA) and polycaprolactone (PCL), to prepare sustained-release injectable nanoparticles (NPs) of bone morphogenetic protein-2 (BMP-2) for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2) containing grafting material for the repair of alveolar bone clefts.
Materials and methods: BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 µg/kg of rhBMP-2 NP formulations.
Results: The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w) ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for scanning electron microscope examination and in vivo evaluation. Histomorphometric analysis showed 78% trabecular bone fill, mostly mature bone in the defects treated with rhBMP-2 in NPs within 6 weeks.
Conclusion: The prepared NPs prolonged the release and the residence time of rhBMP-2 in rabbits, which led to the formation of adequate bone in critical size alveolar bone defects in 6 weeks. This noninvasive method has application for the primary restoration of alveolar bone defects.

Keywords: BMP-2, biodegradable polymers, nanoparticle, PLGA, PCL, alveolar defects

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]