Back to Journals » Drug Design, Development and Therapy » Volume 9

Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status

Authors Hraiech S, Brégeon F, Rolain J

Received 17 February 2015

Accepted for publication 26 March 2015

Published 16 July 2015 Volume 2015:9 Pages 3653—3663


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Shu-Feng Zhou

Sami Hraiech,1,2 Fabienne Brégeon,1,3 Jean-Marc Rolain1

1Institut Hospitalo-Universitaire Méditerranée Infection, URMITE CNRS IRD INSERM UMR 7278, 2Réanimation Médicale – Détresses Respiratoires et Infections Sévères, APHM, CHU Nord, 3Service d’Explorations Fonctionnelles Respiratoires, APHM, CHU Nord, Marseille, France

Abstract: Pulmonary infections involving Pseudomonas aeruginosa are among the leading causes of the deterioration of the respiratory status of cystic fibrosis (CF) patients. The emergence of multidrug-resistant strains in such populations, favored by iterative antibiotic cures, has led to the urgent need for new therapies. Among them, bacteriophage-based therapies deserve a focus. One century of empiric use in the ex-USSR countries suggests that bacteriophages may have beneficial effects against a large range of bacterial infections. Interest in bacteriophages has recently renewed in Western countries, and the in vitro data available suggest that bacteriophage-based therapy may be of significant interest for the treatment of pulmonary infections in CF patients. Although the clinical data concerning this specific population are relatively scarce, the beginning of the first large randomized study evaluating bacteriophage-based therapy in burn infections suggests that the time has come to assess the effectiveness of this new therapy in CF P. aeruginosa pneumonia. Consequently, the aim of this review is, after a brief history, to summarize the evidence concerning bacteriophage efficacy against P. aeruginosa and, more specifically, the in vitro studies, animal models, and clinical trials targeting CF.

Keywords: pneumonia, pulmonary infection, bacterial infection, multidrug resistance

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]