Back to Browse Journals » Drug Design, Development and Therapy » Volume 3

Troglitazone reverses the multiple drug resistance phenotype in cancer cells

Authors Gerald F Davies, Bernhard HJ Juurlink, Troy AA Harkness

Published Date March 2009 Volume 2009:3 Pages 79—88

DOI http://dx.doi.org/10.2147/DDDT.S3314

Published 17 March 2009

Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness1

1Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia

Abstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX) resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1) and histone H3 expression. The thiazolidinedione troglitazone (TRG) downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR) phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX). The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp) drug efflux pump multiple drug resistance protein 1 (MDR-1), and the breast cancer resistance protein (BCRP). TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers.

Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Statin prescription patterns, adherence, and attainment of cholesterol treatment goals in routine clinical care: a Danish population-based study

Svensson E, Nielsen RB, Hasvold P, Aarskog P, Thomsen RW

Clinical Epidemiology 2015, 7:213-223

Published Date: 26 February 2015

The effect of comorbidities on COPD assessment: a pilot study

Weinreich UM, Thomsen LP, Bielaska B, Jensen VH, Vuust M, Rees SE

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:429-438

Published Date: 25 February 2015

Sustained-release nanoART formulation for the treatment of neuroAIDS

Jayant RD, Atluri VSR, Agudelo M, Sagar V, Kaushik A, Nair M

International Journal of Nanomedicine 2015, 10:1077-1093

Published Date: 4 February 2015

Urological surgery in elderly patients: results and complications

Brodak M, Tomasek J, Pacovsky J, Holub L, Husek P

Clinical Interventions in Aging 2015, 10:379-385

Published Date: 2 February 2015

Photothermal cancer therapy using graphitic carbon–coated magnetic particles prepared by one-pot synthesis

Lee HJ, Sanetuntikul J, Choi ES, Lee BR, Kim JH, Kim E, Shanmugam S

International Journal of Nanomedicine 2015, 10:271-282

Published Date: 30 December 2014

Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles

Schütz CA, Staedler D, Crosbie-Staunton K, Movia D, Chapuis Bernasconi C, Kenzaoui BH, Prina-Mello A, Juillerat-Jeanneret L

International Journal of Nanomedicine 2014, 9:3481-3498

Published Date: 23 July 2014

Chemotherapeutic potential of curcumin-bearing microcells against hepatocellular carcinoma in model animals

Farazuddin M, Dua B, Zia Q, Khan AA, Joshi B, Owais M

International Journal of Nanomedicine 2014, 9:1139-1152

Published Date: 3 March 2014