Back to Browse Journals » Drug Design, Development and Therapy » Volume 7

The effect of a peptide-containing synthetic lung surfactant on gas exchange and lung mechanics in a rabbit model of surfactant depletion

Authors van Zyl JM, Smith J, Hawtrey A

Published Date March 2013 Volume 2013:7 Pages 139—148

DOI http://dx.doi.org/10.2147/DDDT.S40622

Received 22 November 2012, Accepted 3 January 2013, Published 11 March 2013

Johann M van Zyl,1 Johan Smith,2 Arthur Hawtrey1

1Division of Pharmacology, 2Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa

Background: Currently, a new generation of synthetic pulmonary surfactants is being developed that may eventually replace animal-derived surfactants used in the treatment of respiratory distress syndrome. Enlightened by this, we prepared a synthetic peptide-containing surfactant (Synsurf) consisting of phospholipids and poly-L-lysine electrostatically bonded to poly-L-glutamic acid. Our objective in this study was to investigate if bronchoalveolar lavage (BAL)-induced acute lung injury and surfactant deficiency with accompanying hypoxemia and increased alveolar and physiological dead space is restored to its prelavage condition by surfactant replacement with Synsurf, a generic prepared Exosurf, and a generic Exosurf containing Ca2+.
Methods: Twelve adult New Zealand white rabbits receiving conventional mechanical ventilation underwent repeated BAL to create acute lung injury and surfactant-deficient lung disease. Synthetic surfactants were then administered and their effects assessed at specified time points over 5 hours. The variables assessed before and after lavage and surfactant treatment included alveolar and physiological dead space, dead space/tidal volume ratio, arterial end-tidal carbon dioxide tension (PCO2) difference (mainstream capnography), arterial blood gas analysis, calculated shunt, and oxygen ratios.
Results: BAL led to acute lung injury characterized by an increasing arterial PCO2 and a simultaneous increase of alveolar and physiological dead space/tidal volume ratio with no intergroup differences. Arterial end-tidal PCO2 and dead space/tidal volume ratio correlated in the Synsurf, generic Exosurf and generic Exosurf containing Ca2+ groups. A significant and sustained improvement in systemic oxygenation occurred from time point 180 minutes onward in animals treated with Synsurf compared to the other two groups (P < 0.001). A statistically significant decrease in pulmonary shunt (P < 0.001) was found for the Synsurf-treated group of animals, as well as radiographic improvement in three out of four animals in that group.
Conclusion: In general, surfactant-replacement therapy in the animals did not fully restore the lung to its prelavage condition. However, our data show that the formulated surfactant Synsurf improves oxygenation by lowering pulmonary shunt.

Keywords: pulmonary surfactant, synthetic peptides, respiratory dead space, capnometry, pulmonary gas exchange, oxygenation

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Single- and multiple-dose pharmacokinetics, pharmacodynamics, and safety of apixaban in healthy Chinese subjects [Corrigendum]

Cui Y, Song Y, Wang J, Yu Z, Schuster A, Barrett YC, Frost C

Clinical Pharmacology: Advances and Applications 2014, 6:61-62

Published Date: 27 March 2014

Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers

Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T

Clinical Pharmacology: Advances and Applications 2014, 6:51-59

Published Date: 19 March 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Detemir as a once-daily basal insulin in type 2 diabetes

Nelson SE

Clinical Pharmacology: Advances and Applications 2011, 3:27-37

Published Date: 18 August 2011

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010