skip to content
Dovepress - Open Access to Scientific and Medical Research
View our mobile site

15319

Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells



Original Research

(8211) Total Article Views


Authors: Karmakar A, Bratton SM, Dervishi E, Ghosh A, Mahmood M, Xu Y, Saeed L, Mustafa T, Casciano D, Radominska-Pandya A, Biris AS

Published Date May 2011 Volume 2011:6 Pages 1045 - 1055
DOI: http://dx.doi.org/10.2147/IJN.S17684

Alokita Karmakar2, Stacie M Bratton1, Enkeleda Dervishi2, Anindya Ghosh3, Meena Mahmood2, Yang Xu2, Lamya Mohammed Saeed2, Thikra Mustafa2, Dan Casciano2, Anna Radominska-Pandya1, Alexandru S Biris2
1
Biochemistry Department, University of Arkansas for Medical Sciences; 2Nanotechnology Center, Applied Science Department; 3Department of Chemistry, University of Arkansas, Little Rock, AR, USA

Abstract: A gene delivery concept based on ethylenediamine-functionalized single-walled carbon nanotubes (f-SWCNTs) using the oncogene suppressor p53 gene as a model gene was successfully tested in vitro in MCF-7 breast cancer cells. The f-SWCNTs-p53 complexes were introduced into the cell medium at a concentration of 20 µg mL-1 and cells were exposed for 24, 48, and 72 hours. Standard ethidium bromide and acridine orange assays were used to detect apoptotic cells and indicated that a significantly larger percentage of the cells (approx 40%) were dead after 72 hours of exposure to f-SWCNTs-p53 as compared to the control cells, which were exposed to only p53 or f-SWCNTs, respectively. To further support the uptake and expression of the genes within the cells, green fluorescent protein-tagged p53, attached to the f-SWCNTs was added to the medium and the complex was observed to be strongly expressed in the cells. Moreover, caspase 3 activity was found to be highly enhanced in cells incubated with the f-SWCNTs-p53 complex, indicating strongly induced apoptosis. This system could be the foundation for novel gene delivery platforms based on the unique structural and morphological properties of multi-functional nanomaterials.

Keywords: carbon nanotubes, gene delivery, cancer cells, p53 oncogene suppressor



Post to:
Cannotea Citeulike Del.icio.us Facebook LinkedIn Twitter

 

Other articles by Dr Alexandru S Biris


Readers of this article also read: