Back to Journals » Clinical Interventions in Aging » Volume 8

Dual-channel functional electrical stimulation improvements in speed-based gait classifications

Authors Springer S, Laufer Y, Becher M, Vatine J

Received 4 December 2012

Accepted for publication 8 January 2013

Published 28 February 2013 Volume 2013:8 Pages 271—277

DOI https://doi.org/10.2147/CIA.S41141

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 5



Shmuel Springer,1,2 Yocheved Laufer,1 Meni Becher,1,2 Jean-Jacques Vatine3,4

1Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, 2Clinical Department, Bioness Neuromodulation, Ra'anana, 3Outpatient and Research Division, Reuth Medical Center, Tel Aviv, 4Department of Rehabilitation Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel

Background: Functional electrical stimulation (FES) is becoming an accepted treatment method for enhancing gait performance in patients who present with gait difficulties resulting from hemiparesis. The purpose of this study was to test whether individuals with hemiparesis who have varied gait speeds, which place them in different functional categories, benefit to the same extent from the application of FES.
Methods: Thirty-six subjects with chronic hemiparesis demonstrating foot-drop and deficits in knee and/or hip control were fitted with a dual-channel FES system activating the dorsiflexors and hamstring muscles. Gait was assessed during a 2-minute walk test with and without stimulation. A second assessment was conducted after 6 weeks of daily use. Analysis was performed with the subjects stratified into three functional ambulation classes according to their initial gait categories.
Results: The dual-channel FES improved the gait velocity of all three subgroups. No minimal gait velocity was required in order to gain benefits from FES. For example, subjects with limited household ambulation capabilities improved their gait speed by 63.3% (from 0.30 ± 0.09 m/sec to 0.49 ± 0.20 m/sec; P < 0.01), while subjects with functional community ambulation capabilities improved their gait speed by 25.5% (from 0.90 ± 0.11 m/sec to 1.13 ± 0.22 m/sec; P < 0.01).
Conclusion: Dual-channel FES positively affects gait velocity in patients with chronic hemiparesis, regardless of their initial gait velocity. Furthermore, gait velocity gains may be large enough to change an individual's ambulation status to a higher functional category.

Keywords: hemiparesis, functional electrical stimulation, gait velocity, ambulation

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.