Back to Browse Journals » Research Reports in Clinical Cardiology » Volume 2

The western diet and lifestyle and diseases of civilization

Authors Pedro Carrera-Bastos, Maelan Fontes-Villalba, James H O’Keefe, et al

Published Date March 2011 Volume 2011:2 Pages 15—35

DOI http://dx.doi.org/10.2147/RRCC.S16919

Published 9 March 2011

Pedro Carrera-Bastos1, Maelan Fontes-Villalba1, James H O’Keefe2, Staffan Lindeberg1, Loren Cordain3
1Center for Primary Health Care Research, Faculty of Medicine at Lund University, Malmö, Sweden; 2Mid America Heart and Vascular Institute/University of Missouri-Kansas City, Kansas City, Missouri, USA; 3Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA

Abstract: It is increasingly recognized that certain fundamental changes in diet and lifestyle that occurred after the Neolithic Revolution, and especially after the Industrial Revolution and the Modern Age, are too recent, on an evolutionary time scale, for the human genome to have completely adapted. This mismatch between our ancient physiology and the western diet and lifestyle underlies many so-called diseases of civilization, including coronary heart disease, obesity, hypertension, type 2 diabetes, epithelial cell cancers, autoimmune disease, and osteoporosis, which are rare or virtually absent in hunter–gatherers and other non-westernized populations. It is therefore proposed that the adoption of diet and lifestyle that mimic the beneficial characteristics of the preagricultural environment is an effective strategy to reduce the risk of chronic degenerative diseases.

Keywords: Paleolithic, hunter–gatherers, Agricultural Revolution, modern diet, western lifestyle and diseases

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

In vitro and in vivo evaluation of a sublingual fentanyl wafer formulation

Lim SCB, Paech MJ, Sunderland B, Liu Y

Drug Design, Development and Therapy 2013, 7:317-324

Published Date: 12 April 2013

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Newer agents in antiplatelet therapy: a review

Yeung J, Holinstat M

Journal of Blood Medicine 2012, 3:33-42

Published Date: 25 June 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010