Back to Browse Journals » International Journal of Nanomedicine » Volume 1 » Issue 1

Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns

Authors Dongwoo Khang, Michiko Sato, Rachel L Price, Alexander E Ribbe Thomas J Webster

Published Date January 2006 Volume 2006:1(1) Pages 65—72

DOI http://dx.doi.org/

Published 25 January 2006

Dongwoo Khang1, Michiko Sato4, Rachel L Price2, Alexander E Ribbe3
Thomas J Webster2,4

1Department of Physics, 2Weldon School of Biomedical Engineering, 3Purdue Laboratory of Chemical Nanotechnology and Departments of Chemistry, and 4School of Materials Engineering, Purdue

Abstract: In an effort to develop better orthopedic implants, osteoblast (bone-forming cells) adhesion was determined on microscale patterns (30 μm lines) of carbon nanofibers placed on polymer substrates. Patterns of carbon nanofibers (CNFs) on a model polymer (polycarbonate urethane [PCU]) were developed using an imprinting method that placed CNFs in selected regions. Results showed the selective adhesion and alignment of osteoblasts on CNF patterns placed on PCU. Results also showed greater attraction forces between fibronectin and CNF (compared with PCU) patterns using atomic force microscope force-displacement curves. Because fibronectin is a protein that mediates osteoblast adhesion, these results provide a mechanism of why osteoblast adhesion was directed towards CNF patterns. Lastly, this study showed that the directed osteoblast adhesion on CNF patterns translated to enhanced calcium phosphate mineral deposition along linear patterns of CNFs on PCU. Since CNFs are conductive materials, this study formulated substrates that through electrical stimulation could be used in future investigations to further promote osteoblasts to deposit anisotropic patterns of calcium containing mineral similar to that observed in long bones.

Keywords: carbon nanotubes, carbon nanofibers, osteoblasts, orthopedic, biomaterials, alignment

Download Article [PDF] 

Readers of this article also read:

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Development of a nanoporous and multilayer drug-delivery platform for medical implants

Karagkiozaki V, Vavoulidis E, Karagiannidis PG, Gioti M, Fatouros DG, Vizirianakis IS, Logothetidis S

International Journal of Nanomedicine 2012, 7:5327-5338

Published Date: 8 October 2012

Delivery of a transforming growth factor β-1 plasmid to mesenchymal stem cells via cationized Pleurotus eryngii polysaccharide nanoparticles

Deng WW, Cao X, Wang M, Qu R, Su WY, Yang Y, Wei YW, Xu XM, Yu JN

International Journal of Nanomedicine 2012, 7:1297-1311

Published Date: 14 March 2012

Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells

Khan AA, Paul A, Abbasi S, Prakash S

International Journal of Nanomedicine 2011, 6:1069-1081

Published Date: 24 May 2011

Risk factors associated with methamphetamine use and heart failure among Native Hawaiians and other Pacific Island peoples

Marjorie K Mau, Karynna Asao, Jimmy Efird, Erin Saito, Robert Ratner, et al

Vascular Health and Risk Management 2009, 5:45-52

Published Date: 7 December 2008

Nanoparticulate systems for polynucleotide delivery

Ashwin Basarkar, Jagdish Singh

International Journal of Nanomedicine 2007, 2:353-360

Published Date: 10 October 2007