Back to Journals » Drug Design, Development and Therapy » Volume 13

YB-1 modulates the drug resistance of glioma cells by activation of MDM2/p53 pathway

Authors Tong H, Zhao K, Zhang J, Zhu J, Xiao J

Received 28 August 2018

Accepted for publication 22 November 2018

Published 14 January 2019 Volume 2019:13 Pages 317—326


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Qiongyu Guo

Hui Tong,1,* Kai Zhao,2,* Jingyu Zhang,3 Jinxin Zhu,4 Jianqi Xiao2

1Department of Neurosurgery, Linyi Central Hospital, Linyi, Shandong 276400, People’s Republic of China; 2Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161005, People’s Republic of China; 3Department of Internal Medicine, Jiangpu District Health Center of Huai’an, Huai’an, Jiangsu, 223001, People’s Republic of China; 4Department of Neurosurgery, Lianshui County People’s Hospital, Huai’an, Jiangsu 223400, People’s Republic of China

*These authors contributed equally to this work

Background: Y-box-binding protein-1 (YB-1) is aberrantly expressed in a variety of cancers. However, the biological functional role of YB-1 in glioma is not yet clear.
Methods: The expression of MDM2 and YB-1 was analyzed by real time PCR. Overexpression and knockdown of YB-1 in glioma cells were created by transfection of pcDNA-YB-1 and siRNA against YB-1, respectively. Cell viability was performed by CCK8 assay.
Results: Our findings showed that glioma tissues had higher expressions of YB-1 than that in cancer-free tissues in 54 glioma patients, which were also positively correlated with Murine MDM2 expression. Overexpression of YB-1 or MDM2 renders a drug resistance feature in glioma cell exposed to temozolomide (TMZ), by directly targeting p53. Genetic or chemical inhibition of MDM2 significantly blocked YB-1-modulated response of glioma cells to TMZ. Moreover, inhibition of YB-1 or MDM2 reduced glioma cells metastasis and mortality in mice.
Conclusion: YB-1 facilitates the resistance of glioma cells to TMZ by direct activation of MDM2/p53 signaling and represents a promising molecular target for glioma treatment.

Keywords: glioma, p53, Murine double minute 2, Y-box binding protein-1, drug resistance, temozolomide


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]