Back to Journals » International Journal of Nanomedicine » Volume 14

Vitamin K1 As A Potential Molecule For Reducing Single-Walled Carbon Nanotubes-Stimulated α-Synuclein Structural Changes And Cytotoxicity

Authors Naskhi A, Jabbari S, Othman GQ, Aziz FM, Salihi A, Sharifi M, Sari S, Akhtari K, Abdulqadir SZ, Alasady AAB, Abou-Zied OK, Hasan A, Falahati M

Received 14 July 2019

Accepted for publication 9 October 2019

Published 24 October 2019 Volume 2019:14 Pages 8433—8444

DOI https://doi.org/10.2147/IJN.S223182

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Anderson Oliveira Lobo


Amitis Naskhi,1,* Sanaz Jabbari,1,* Goran Qader Othman,2 Falah Mohammad Aziz,3 Abbas Salihi,3,4 Majid Sharifi,5 Soyar Sari,1 Keivan Akhtari,6 Shang Ziyad Abdulqadir,3 Asaad AB Alasady,7 Osama K Abou-Zied,8 Anwarul Hasan,9,10 Mojtaba Falahati5

1Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 2Department of Medical Laboratory, Health Technical College, Erbil Polytechnic University, Erbil, Iraq; 3Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; 4Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq; 5Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 6Department of Physics, University of Kurdistan, Sanandaj, Iran; 7Anatomy, Histology, and Embryology Unit, College of Medicine, University of Duhok, Kurdistan Region, Iraq; 8Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Sultanate of Oman; 9Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; 10Biomedical Research Center, Qatar University, Doha 2713, Qatar

*These authors contributed equally to this work

Correspondence: Mojtaba Falahati
Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Email mojtaba.falahati@alumni.ut.ac.ir
Anwarul Hasan
Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
Email hasan.anwarul.mit@gmail.com

Aims: Different kinds of vitamins can be used as promising candidates to mitigate the structural changes of proteins and associated cytotoxicity stimulated by NPs. Therefore, the structural changes of α-syn molecules and their associated cytotoxicity in the presence of SWCNTs either alone or co-incubated with vitamin K1 were studied by spectroscopic, bioinformatical, and cellular assays.
Methods: Intrinsic and ThT fluorescence, CD, and Congo red absorption spectroscopic approaches as well as TEM investigation, molecular docking, and molecular dynamics were used to explore the protective effect of vitamin K1 on the structural changes of α-syn induced by SWCNTs. The cytotoxicity of α-syn/SWCNTs co-incubated with vitamin K1 against SH-SY5Y cells was also carried out by MTT, LDH, and caspase-3 assays.
Results: Fluorescence spectroscopy showed that vitamin K1 has a significant effect in reducing SWCNT-induced fluorescence quenching and aggregation of α- syn. CD, Congo red adsorption, and TEM investigations determined that co-incubation of α- syn with vitamin K1 inhibited the propensity of α-syn into the structural changes and amorphous aggregation in the presence of SWCNT. Docking studies determined the occupation of preferred docked site of SWCNT by vitamin K1 on α- syn conformation. A molecular dynamics study also showed that vitamin K1 reduced the structural changes of α- syn induced by SWCNT. Cellular data exhibited that the cytotoxicity of α- syn co-incubated with vitamin K1 in the presence of SWCNTs is less than the outcomes obtained in the absence of the vitamin K1.
Conclusion: It may be concluded that vitamin K1 decreases the propensity of α- syn aggregation in the presence of SWCNTs and induction of cytotoxicity.

Keywords: α- Syn, single-walled carbon nanotube, aggregation, vitamin K1, cytotoxicity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]