Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Vitamin C-driven epirubicin loading into liposomes

Authors Lipka D, Gubernator J, Filipczak N, Barnert S, Süss R, Legut M, Kozubek A

Received 7 May 2013

Accepted for publication 30 June 2013

Published 23 September 2013 Volume 2013:8(1) Pages 3573—3585

DOI https://doi.org/10.2147/IJN.S47745

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Dominik Lipka,1 Jerzy Gubernator,1 Nina Filipczak,1 Sabine Barnert,2 Regine Süss,2 Mateusz Legut,1 Arkadiusz Kozubek1

1Department of Lipids and Liposomes, University of Wroclaw, Wroclaw, Poland; 2Department of Pharmaceutical Technology, Albert Ludwigs University, Freiburg, Germany

Abstract: The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose.

Keywords: liposomes, epirubicin, vitamin C, antitumor activity, remote loading, ascorbic acid

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]