Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications

Authors Amna T, Hassan MS, Yang J, Khil MS, Song KD, Oh JD, Hwang I

Received 6 September 2013

Accepted for publication 17 December 2013

Published 13 February 2014 Volume 2014:9(1) Pages 891—898

DOI https://doi.org/10.2147/IJN.S54113

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Touseef Amna,1 M Shamshi Hassan,2 Jieun Yang,1 Myung-Seob Khil,2 Ki-Duk Song,3 Jae-Don Oh,3 Inho Hwang1

1Department of Animal Sciences and Biotechnology, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, South Korea; 3Genomic Informatics Center, Hankyong National University, Anseong, South Korea

Abstract: Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide–olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil–copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.

Keywords: micronanofibers, copper oxide, wound healing, polyurethane, olive oil

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Readers of this article also read:

Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

Nocerino N, Fulgione A, Iannaccone M, Tomasetta L, Ianniello F, Martora F, Lelli M, Roveri N, Capuano F, Capparelli R

International Journal of Nanomedicine 2014, 9:1175-1184

Published Date: 5 March 2014

Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

Svensson S, Forsberg M, Hulander M, Vazirisani F, Palmquist A, Lausmaa J, Thomsen P, Trobos M

International Journal of Nanomedicine 2014, 9:775-794

Published Date: 7 February 2014

Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery

Lee CH, Lin YH, Chang SH, Tai CD, Liu SJ, Chu Y, Wang CJ, Hsu MY, Chang H, Chang GJ, Hung KC, Hsieh MJ, Lin FC, Hsieh IC, Wen MS, Huang Y

International Journal of Nanomedicine 2014, 9:311-326

Published Date: 6 January 2014

Erratum

Marusza W, Mlynarczyk G, Olszanski R, Netsvyetayeva I, Obrowski M, Iannitti T, Palmieri B

International Journal of Nanomedicine 2012, 7:4119-4120

Published Date: 27 July 2012

Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity

Elzatahry AA, Al-Enizi AM, Elsayed EA, Butorac RR, Al-Deyab SS, Wadaan MAM, Cowley AH

International Journal of Nanomedicine 2012, 7:2829-2832

Published Date: 7 June 2012

Antibacterial hemostatic dressings with nanoporous bioglass containing silver

Hu G, Xiao L, Tong P, Bi D, Wang H, Ma H, Zhu G, Liu H

International Journal of Nanomedicine 2012, 7:2613-2620

Published Date: 28 May 2012