Back to Journals » International Journal of Nanomedicine » Volume 12

Vascular thrombus imaging in vivo via near-infrared fluorescent nanodiamond particles bioengineered with the disintegrin bitistatin (Part II)

Authors Gerstenhaber JA, Barone FC, Marcinkiewicz C, Li J, Shiloh AO, Sternberg M, Lelkes PI, Feuerstein G

Received 21 July 2017

Accepted for publication 29 August 2017

Published 24 November 2017 Volume 2017:12 Pages 8471—8482


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J. Webster

Jonathan A Gerstenhaber,1,* Frank C Barone,2,* Cezary Marcinkiewicz,1,3 Jie Li,2 Aaron O Shiloh,4 Mark Sternberg,3 Peter I Lelkes,1,* Giora Feuerstein1,3,*

1Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, 2Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, 3Debina Diagnostic Inc., Newtown Square, 4Diagnostic Imaging, Inc., Philadelphia, PA, USA

*These authors contributed equally to this work

Abstract: The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV) and N-V-N color centers and sizes (100–10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding of F-NDPNV-Bit to activated platelets within the blood clot. We posit that F-NDPNV-Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device.

fluorescent nanodiamond particles, NIR fluorescence imaging, thrombosis, biomarkers

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]