Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 10 » Issue 1

Validation of an administrative claims-based diagnostic code for pneumonia in a US-based commercially insured COPD population

Authors Kern DM, Davis J, Williams SA, Tunceli O, Wu B, Hollis S, Strange C, Trudo F

Received 26 February 2015

Accepted for publication 21 May 2015

Published 23 July 2015 Volume 2015:10(1) Pages 1417—1425

DOI https://doi.org/10.2147/COPD.S83135

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Editor who approved publication: Dr Richard Russell

David M Kern,1 Jill Davis,2 Setareh A Williams,3 Ozgur Tunceli,1 Bingcao Wu,1 Sally Hollis,4 Charlie Strange,5 Frank Trudo2

1HealthCore, Inc., Wilmington, DE, 2AstraZeneca Pharmaceuticals, Wilmington, DE, 3AstraZeneca Pharmaceuticals, Gaithersburg, MD, USA; 4AstraZeneca Pharmaceuticals, Cheshire, UK; 5Department of Medicine, Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, SC, USA

Objective: To estimate the accuracy of claims-based pneumonia diagnoses in COPD patients using clinical information in medical records as the reference standard.
Methods: Selecting from a repository containing members’ data from 14 regional United States health plans, this validation study identified pneumonia diagnoses within a group of patients initiating treatment for COPD between March 1, 2009 and March 31, 2012. Patients with ≥1 claim for pneumonia (International Classification of Diseases Version 9-CM code 480.xx–486.xx) were identified during the 12 months following treatment initiation. A subset of 800 patients was randomly selected to abstract medical record data (paper based and electronic) for a target sample of 400 patients, to estimate validity within 5% margin of error. Positive predictive value (PPV) was calculated for the claims diagnosis of pneumonia relative to the reference standard, defined as a documented diagnosis in the medical record.
Results: A total of 388 records were reviewed; 311 included a documented pneumonia diagnosis, indicating 80.2% (95% confidence interval [CI]: 75.8% to 84.0%) of claims-identified pneumonia diagnoses were validated by the medical charts. Claims-based diagnoses in inpatient or emergency departments (n=185) had greater PPV versus outpatient settings (n=203), 87.6% (95% CI: 81.9%–92.0%) versus 73.4% (95% CI: 66.8%–79.3%), respectively. Claims-diagnoses verified with paper-based charts had similar PPV as the overall study sample, 80.2% (95% CI: 71.1%–87.5%), and higher PPV than those linked to electronic medical records, 73.3% (95% CI: 65.5%–80.2%). Combined paper-based and electronic records had a higher PPV, 87.6% (95% CI: 80.9%–92.6%).
Conclusion: Administrative claims data indicating a diagnosis of pneumonia in COPD patients are supported by medical records. The accuracy of a medical record diagnosis of pneumonia remains unknown. With increased use of claims data in medical research, COPD researchers can study pneumonia with confidence that claims data are a valid tool when studying the safety of COPD therapies that could potentially lead to increased pneumonia susceptibility or severity.

Keywords: positive predictive value, pneumonia, validation, claims data, medical record review

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

A validation of clinical data captured from a novel Cancer Care Quality Program directly integrated with administrative claims data

Kern DM, Barron JJ, Wu B, Ganetsky A, Willey VJ, Quimbo RA, Fisch MJ, Singer J, Nguyen A, Mamtani R

Pragmatic and Observational Research 2017, 8:149-155

Published Date: 26 August 2017

Comparative effectiveness of budesonide/formoterol combination and tiotropium bromide among COPD patients new to these controller treatments

Trudo F, Kern DM, Davis JR, Tunceli O, Zhou S, Graham EL, Strange C, Williams SA

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:2055-2066

Published Date: 28 September 2015

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Rituximab for managing acquired hemophilia A in a case of chronic neutrophilic leukemia with the JAK2 kinase V617F mutation

Imashuku S, Kudo N, Kubo K, Saigo K, Okuno N, Tohyama K

Journal of Blood Medicine 2012, 3:157-161

Published Date: 5 December 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010