Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats

Authors Wu S, Li L, Wang G, Shen W, Xu Y, Liu Z, Zhuo Z, Xia H, Gao Y, Tan K

Received 8 September 2014

Accepted for publication 25 October 2014

Published 3 December 2014 Volume 2014:9(1) Pages 5639—5651


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Prof. Dr. Thomas J. Webster

Shengzheng Wu,1 Lu Li,1 Gong Wang,1 Weiwei Shen,2 Yali Xu,1 Zheng Liu,1 Zhongxiong Zhuo,1 Hongmei Xia,1 Yunhua Gao,1 Kaibin Tan1

1Department of Ultrasound, 2Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China

Abstract: Mesenchymal stem cell (MSC) therapy has been considered a promising strategy to cure diabetic nephropathy (DN). However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1) plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MBSDF-1) via covalent conjugation. The characterization and bioactivity of MBSDF-1 were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MBSDF-1. The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 µg/mL. MBSDF-1 remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MBSDF-1 destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair.

Keywords: mesenchymal stem cell, ultrasound, microbubbles, homing, stromal cell-derived factor-1, diabetic nephropathy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]