Back to Journals » International Journal of Nanomedicine » Volume 4

Tunable drug loading and release from polypeptide multilayer nanofilms

Authors Bingbing Jiang, Bingyun Li

Published 11 March 2009 Volume 2009:4 Pages 37—53

DOI https://doi.org/10.2147/IJN.S4970

Review by Single-blind

Peer reviewer comments 3

Bingbing Jiang1, Bingyun Li1,2,3
1Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV, USA; 2WVNano Initiative, WV, USA; 3Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA

Abstract: Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibiotic-loaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients.

Keywords: polypeptide, self-assembly, polyelectrolyte multilayer, nanofilm, charged molecule, tunable release

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Other article by this author:

Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

Bingbing Jiang, John B Barnett, Bingyun Li

Nanotechnology, Science and Applications 2009, 2:21-27

Published Date: 5 August 2009

Readers of this article also read:

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Clinical epidemiology of epithelial ovarian cancer in the UK

Doufekas K, Olaitan A

International Journal of Women's Health 2014, 6:537-545

Published Date: 23 May 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

Luo H, Jiang B, Li B, Li Z, Jiang BH, Chen YC

International Journal of Nanomedicine 2012, 7:3951-3959

Published Date: 24 July 2012

Nanomedicine as an emerging approach against intracellular pathogens

Armstead AL, Li B

International Journal of Nanomedicine 2011, 6:3281-3293

Published Date: 9 December 2011

Microemulsion-based novel transdermal delivery system of tetramethylpyrazine: preparation and evaluation in vitro and in vivo

Zhao JH, Ji L, Wang H, Chen ZQ, Zhang YT, Liu Y, Feng NP

International Journal of Nanomedicine 2011, 6:1611-1619

Published Date: 9 August 2011

Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

Bingbing Jiang, John B Barnett, Bingyun Li

Nanotechnology, Science and Applications 2009, 2:21-27

Published Date: 5 August 2009