Back to Journals » International Journal of Nanomedicine » Volume 6

Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers

Authors Fazlollahi F, Sipos, Kim, Hamm-Alvarez, Borok, Kim K , Crandall ED

Published 10 November 2011 Volume 2011:6 Pages 2849—2857


Review by Single anonymous peer review

Peer reviewer comments 2

Farnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8
1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Department of Pathology, 5Department of Physiology and Biophysics, 6Department of Pharmacology and Pharmaceutical Sciences, 7Department of Biomedical Engineering, 8Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA

Background: In this study, primary rat alveolar epithelial cell monolayers (RAECM) were used to investigate transalveolar epithelial quantum dot trafficking rates and underlying transport mechanisms.
Methods: Trafficking rates of quantum dots (PEGylated CdSe/ZnS, core size 5.3 nm, hydrodynamic size 25 nm) in the apical-to-basolateral direction across RAECM were determined. Changes in bioelectric properties (ie, transmonolayer resistance and equivalent active ion transport rate) of RAECM in the presence or absence of quantum dots were measured. Involvement of endocytic pathways in quantum dot trafficking across RAECM was assessed using specific inhibitors (eg, methyl-ß-cyclodextrin, chlorpromazine, and dynasore for caveolin-, clathrin-, and dynamin-mediated endocytosis, respectively). The effects of lowering tight junctional resistance on quantum dot trafficking were determined by depleting Ca2+ in apical and basolateral bathing fluids of RAECM using 2 mM EGTA. Effects of temperature on quantum dot trafficking were studied by lowering temperature from 37°C to 4°C.
Results: Apical exposure of RAECM to quantum dots did not elicit changes in transmonolayer resistance or ion transport rate for up to 24 hours; quantum dot trafficking rates were not surface charge-dependent; methyl-ß-cyclodextrin, chlorpromazine, and dynasore did not decrease quantum dot trafficking rates; lowering of temperature decreased transmonolayer resistance by approximately 90% with a concomitant increase in quantum dot trafficking by about 80%; and 24 hours of treatment of RAECM with EGTA decreased transmonolayer resistance by about 95%, with increased quantum dot trafficking of up to approximately 130%.
Conclusion: These data indicate that quantum dots do not injure RAECM and that quantum dot trafficking does not appear to take place via endocytic pathways involving caveolin, clathrin, or dynamin. We conclude that quantum dot translocation across RAECM takes place via both transcellular and paracellular pathways and, based on comparison with our prior studies, interactions of nanoparticles with RAECM are strongly dependent on nanoparticle composition and surface properties.

Keywords: alveolar epithelial barrier, transport, paracellular pathways, endocytosis

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.