Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood–brain barrier

Authors Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L

Received 20 September 2013

Accepted for publication 12 October 2013

Published 20 January 2014 Volume 2014:9(1) Pages 575—588

DOI https://doi.org/10.2147/IJN.S54750

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Mayank Chaturvedi,1 Yves Molino,2 Bojja Sreedhar,3 Michel Khrestchatisky,4 Leszek Kaczmarek1

1Laboratory of Neurobiology, Nencki Institute, Warsaw, Poland; 2Vect-Horus, Marseille, France; 3Indian Institute of Chemical Technology, Hyderabad, India; 4Aix-Marseille Université, CNRS, NICN, UMR7259, Marseille, France

Aim: The aim of this study was to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) – across the blood–brain barrier (BBB) to inhibit deleterious matrix metalloproteinases (MMPs).
Materials and methods: The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80). We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs.
Results: Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80.
Conclusion: The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo.

Keywords: PLGA nanoparticles, drug delivery, protein delivery, sustained release, brain delivery, BBB penetration, RBCEC culture

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Autophagy dysfunction upregulates beta-amyloid peptides via enhancing the activity of γ-secretase complex

Cai Z, Zhou Y, Liu Z, Ke Z, Zhao B

Neuropsychiatric Disease and Treatment 2015, 11:2091-2099

Published Date: 17 August 2015

Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity

Marslin G, Revina AM, Khandelwal VKM, Balakumar K, Prakash J, Franklin G, Sheeba CJ

International Journal of Nanomedicine 2015, 10:3163-3170

Published Date: 24 April 2015

Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides

Vacas-Córdoba E, Galán M, de la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MA

International Journal of Nanomedicine 2014, 9:3591-3600

Published Date: 29 July 2014

Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models

Zhang Y, Zhang H, Wu WB, Zhang FH, Liu S, Wang R, Sun YC, Tong T, Jing XB

International Journal of Nanomedicine 2014, 9:2019-2030

Published Date: 23 April 2014

Targeted nanotherapeutics in cancer

Shiekh FA

International Journal of Nanomedicine 2014, 9:1627-1628

Published Date: 26 March 2014

The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids

Contri RV, Frank LA, Kaiser M, Pohlmann AR, Guterres SS

International Journal of Nanomedicine 2014, 9:951-962

Published Date: 12 February 2014

Antibacterial hemostatic dressings with nanoporous bioglass containing silver

Hu G, Xiao L, Tong P, Bi D, Wang H, Ma H, Zhu G, Liu H

International Journal of Nanomedicine 2012, 7:2613-2620

Published Date: 28 May 2012

Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines

Zhu XM, Wang YX, Leung KCF, Lee SF, Zhao F, Wang DW, Lai JMY, Wan C, Cheng CHK, Ahuja AT

International Journal of Nanomedicine 2012, 7:953-964

Published Date: 21 February 2012

Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system

Estevanato L, Cintra D, Baldini N, Portilho F, Barbosa L, Martins O, Lacava B, Miranda-Vilela AL, Tedesco AC, Báo S, Morais PC, Lacava ZGM

International Journal of Nanomedicine 2011, 6:1709-1717

Published Date: 18 August 2011