Back to Journals » International Journal of Nanomedicine » Volume 11

TiO2 nanotube platforms for smart drug delivery: a review

Authors Wang Q, Huang J, Li H, Chen Z, Zhao AZ, Wang Y, Zhang K, Sun H, Al-Deyab SS, Lai Y

Received 19 March 2016

Accepted for publication 12 July 2016

Published 21 September 2016 Volume 2016:11 Pages 4819—4834


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Qun Wang,1,2,* Jian-Ying Huang,1,* Hua-Qiong Li,3 Zhong Chen,4 Allan Zi-Jian Zhao,3 Yi Wang,3 Ke-Qin Zhang,1 Hong-Tao Sun,2 Salem S Al-Deyab,5 Yue-Kun Lai1

1National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 2College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China; 3Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China; 4School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; 5Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia

*These authors contributed equally to this work

Abstract: Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

Keywords: TiO2 nanotubes, anodization, drug delivery, orthopedic implant

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]