Back to Journals » Drug Design, Development and Therapy » Volume 8

Time and dose relationships between schisandrin B- and schisandrae fructus oil-induced hepatotoxicity and the associated elevations in hepatic and serum triglyceride levels in mice

Authors Zhang Y, Pan SY, Zhou SF, Wang XY, Sun N, Zhu PL, Chu ZS, Yu ZL, Ko KM

Received 10 May 2014

Accepted for publication 10 June 2014

Published 19 September 2014 Volume 2014:8 Pages 1429—1439

DOI https://doi.org/10.2147/DDDT.S67518

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Video abstracted presented by Yi Zhang.

Views: 173

Yi Zhang,1 Si-Yuan Pan,1 Shu-Feng Zhou,2 Xiao-Yan Wang,1 Nan Sun,1 Pei-Li Zhu,1 Zhu-Sheng Chu,1 Zhi-Ling Yu,3 Kam-Ming Ko4

1Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3School of Chinese Medicine, Hong Kong Baptist University, 4Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China

Background: Schisandrin B (Sch B), a dibenzocyclooctadiene compound, is isolated from schisandrae fructus (SF). This study was conducted to compare the time- and dose-response between Sch B- and SF oil (SFO)-induced changes in hepatic and serum parameters in mice.
Methods: Institute of Cancer Research (ICR) mice were given a single oral dose of Sch B (0.125–2 g/kg) or SFO (0.3–5 g/kg). Serum alanine aminotransferase (ALT) activity, hepatic malondialdehyde, and triglyceride (TG) levels were measured at increasing time intervals within 6–120 hours postdosing.
Results: Serum ALT activity was elevated by 60%, with maximum effect (Emax) =45.77 U/L and affinity (KD) =1.25 g/kg at 48–96 hours following Sch B, but not SFO, treatment. Sch B and SFO treatments increased hepatic malondialdehyde level by 70% (Emax =2.30 nmol/mg protein and KD =0.41 g/kg) and 22% (Emax =1.42 nmol/mg protein and KD =2.56 g/kg) at 72 hours postdosing, respectively. Hepatic index was increased by 16%–60% (Emax =11.01, KD =0.68 g/kg) and 8%–32% (Emax =9.88, KD =4.47 g/kg) at 12–120 hours and 24–120 hours after the administration of Sch B and SFO, respectively. Hepatic TG level was increased by 40%–158% and 35%–85%, respectively, at 12–96 hours and 6–48 hours after Sch B and SFO treatment, respectively. The values of Emax and KD for Sch B/SFO-induced increase in hepatic TG were estimated to be 22.94/15.02 µmol/g and 0.78/3.03 g/kg, respectively. Both Sch B and SFO increased serum TG (up to 427% and 123%, respectively), with the values of Emax =5.50/4.60 mmol/L and KD =0.43/2.84 g/kg, respectively.
Conclusion: The findings indicated that Sch B/SFO-induced increases in serum/hepatic parameters occurred in a time-dependent manner, with the time of onset being serum TG level < hepatic TG level < hepatic index < serum ALT activity. However, the time of recovery of these parameters to normal values varied as follow: serum TG level < hepatic TG level and liver injury < hepatic index. The Emax and affinity of Sch B on tissue/enzyme/receptor were larger than those of SFO.

Keywords: pharmacodynamics, hepatomegaly, alanine aminotransaminase, affinity, maximum effect

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010