Back to Journals » Drug Design, Development and Therapy » Volume 13

Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: involvement of growth factors and integrin-linked kinase

Authors Karimi E, Abbasi S, Abbasi N

Received 4 May 2019

Accepted for publication 3 July 2019

Published 25 July 2019 Volume 2019:13 Pages 2513—2532

DOI https://doi.org/10.2147/DDDT.S214454

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Tuo Deng


Elahe Karimi,1,2 Shahryar Abbasi,1,3 Naser Abbasi2,4

1Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran; 2Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran; 3Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran; 4Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran

Background: Nowadays, the drug delivery system is important in the treatment of diseases.
Purpose: A polymeric nanoparticle modified by oleic acid (NPMO) as a Thymol (Thy) drug release system was synthesized from Thymbra spicata and its neurotrophic and angiogenic effects on rat’s olfactory ensheathing cells (OECs) in normal (NG) and high glucose (HG) conditions were studied.
Methods: The NPMO was characterized by using different spectroscopy methods, such as infrared, HNMR, CNMR, gel permeation chromatography, dynamic light scattering, and atomic force microscopy. Load and releasing were investigated by HPLC. The toxicity against OECs diet-induced by MTT assay. ROS and generation of nitric oxide (NO) were evaluated using dichloro-dihydro-fluorescein and Griess method, respectively. The expression of protein integrin-linked kinase (ILK), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were evaluated by Western blotting.
Results: ThyNPMO is desirable for transferring drug as a carrier. The amount of Thy and extract (E) loaded on NPMO estimated at 43±2.5% and 41±1.8%, respectively. Then, 65% and 63% of the drug load were released, respectively. Thy, ThyNPMO, E, and ENPMO prevented HG-induced OECs cell death (EC50 33±1.5, 22±0.9, 35±1.8, and 25±1.1 μM, respectively). Incubation with Thy, ThyNPMO, E ,and ENPMO at high concentrations increased cell death with LC50 105±3.5, 82±2.8, 109±4.3, and 86±3.4 μM, respectively in HG states.
Conclusion: OECs were protected by ThyNPMO and ENPMO in protective concentrations by reducing the amount of ROS and NO, maintaining ILK, reducing VEGF, and increasing BDNF and NGF. The mentioned mechanisms were totally reversed at high concentrations.

Keywords: thymol, polymeric nanoparticle, olfactory enshealing cell, drug delivery, high glucose

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]