Back to Journals » International Journal of Nanomedicine » Volume 11

Three-dimensional culture and interaction of cancer cells and dendritic cells in an electrospun nano-submicron hybrid fibrous scaffold

Authors Kim T, Kim CG, Kim JS, Jin S, Yoon S, Bae H, Kim J, Jeong YH, Kwak J

Received 4 December 2015

Accepted for publication 14 January 2016

Published 2 March 2016 Volume 2016:11 Pages 823—835


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Thomas Webster

Dendritic cells (BM-DCs) and mitoxantrone-treated CT26 cancer cells cocultured for 1 hour in 2D culture dish.

Views: 439

Tae-Eon Kim,1–3,* Chang Gun Kim,1–3,* Jin Soo Kim,4 Songwan Jin,4 Sik Yoon,5 Hae-Rahn Bae,6 Jeong-Hwa Kim,7,8 Young Hun Jeong,7,8 Jong-Young Kwak1–3

1Department of Pharmacology, School of Medicine, 2Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea; 3Immune Network Pioneer Research Center, Ajou University Medical Center, Suwon, South Korea; 4Department of Mechanical Engineering, Korea Polytechnic University, Gyeonggi, South Korea; 5Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea; 6Department of Physiology, College of Medicine, Dong-A University, Busan, South Korea; 7School of Mechanical Engineering, 8Department of Mechanical Engineering, Graduate School, Kyungpook National University, Daegu, South Korea

*These authors contributed equally to this work

Abstract: An artificial three-dimensional (3D) culture system that mimics the tumor microenvironment in vitro is an essential tool for investigating the cross-talk between immune and cancer cells in tumors. In this study, we developed a 3D culture system using an electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold (NFS). A hybrid NFS containing an uninterrupted network of nano- and submicron-scale fibers (400 nm to 2 µm) was generated by deposition onto a stainless steel mesh instead of an aluminum plate. The hybrid NFS contained multiplanar pores in a 3D structure. Surface-seeded mouse CT26 colon cancer cells and bone marrow-derived dendritic cells (BM-DCs) were able to infiltrate the hybrid NFS within several hours. BM-DCs cultured on PCL nanofibers showed a baseline inactive form, and lipopolysaccharide (LPS)-activated BM-DCs showed increased expression of CD86 and major histocompatibility complex Class II. Actin and phosphorylated FAK were enriched where unstimulated and LPS-stimulated BM-DCs contacted the fibers in the 3D hybrid NFS. When BM-DCs were cocultured with mitoxantrone-treated CT26 cells in a 3D hybrid NFS, BM-DCs sprouted cytoplasm to, migrated to, synapsed with, and engulfed mitoxantrone-treated CT26 cancer cells, which were similar to the naturally occurring cross-talk between these two types of cells. The 3D hybrid NFS developed here provides a 3D structure for coculture of cancer and immune cells.

Keywords: 3D cell culture, electrospinning, nanofibrous scaffold, dendritic cell, colon cancer cell

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]