Back to Journals » OncoTargets and Therapy » Volume 9

The value of intravoxel incoherent motion model-based diffusion-weighted imaging for outcome prediction in resin-based radioembolization of breast cancer liver metastases

Authors Pieper C, Meyer C, Sprinkart AM, Block W, Ahmadzadehfar H, Schild HH, Mürtz P, Kukuk GM

Received 21 January 2016

Accepted for publication 24 April 2016

Published 5 July 2016 Volume 2016:9 Pages 4089—4098


Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Triparna Sen

Peer reviewer comments 2

Editor who approved publication: Dr William Cho

Claus Christian Pieper,1 Carsten Meyer,1 Alois Martin Sprinkart,1 Wolfgang Block,1 Hojjat Ahmadzadehfar,2 Hans Heinz Schild,1 Petra Mürtz,1 Guido Matthias Kukuk1

1Department of Radiology, 2Department of Nuclear Medicine, University of Bonn, Bonn, Germany

Purpose: To evaluate prognostic values of clinical and diffusion-weighted magnetic resonance imaging-derived intravoxel incoherent motion (IVIM) parameters in patients undergoing primary radioembolization for metastatic breast cancer liver metastases.
Subjects and methods: A total of 21 females (mean age 54 years, range 43–72 years) with liver-dominant metastatic breast cancer underwent standard liver magnetic resonance imaging (1.5 T, diffusion-weighted imaging with b-values of 0, 50, and 800 s/mm2) before and 4–6 weeks after radioembolization. The IVIM model-derived estimated diffusion coefficient D’ and the perfusion fraction f’ were evaluated by averaging the values of the two largest treated metastases in each patient. Kaplan–Meier and Cox regression analyses for overall survival (OS) were performed. Investigated parameters were changes in f’- and D’-values after therapy, age, sex, Eastern Cooperative Oncology Group (ECOG) status, grading of primary tumor, hepatic tumor burden, presence of extrahepatic disease, baseline bilirubin, previous bevacizumab therapy, early stasis during radioembolization, chemotherapy after radioembolization, repeated radioembolization and Response Evaluation Criteria in Solid Tumors (RECIST) response at 6-week follow-up.
Results: Median OS after radioembolization was 6 (range 1.5–54.9) months. In patients with therapy-induced decreasing or stable f’-values, median OS was significantly longer than in those with increased f’-values (7.6 [range 2.6–54.9] vs 2.6 [range 1.5–17.4] months, P<0.0001). Longer median OS was also seen in patients with increased D’-values (6 [range 1.6–54.9] vs 2.8 [range 1.5–17.4] months, P=0.008). Patients with remission or stable disease (responders) according to RECIST survived longer than nonresponders (7.2 [range 2.6–54.9] vs 2.6 [range 1.5–17.4] months, P<0.0001). An ECOG status ≤1 resulted in longer median OS than >1 (7.6 [range 2.6–54.9] vs 1.7 [range 1.5–4.5] months, P<0.0001). Pretreatment IVIM parameters and the other clinical characteristics were not associated with OS. Classification by f’-value changes and ECOG status remained as independent predictors of OS on multivariate analysis, while RECIST response and D’-value changes did not predict survival.
Conclusion: Following radioembolization of breast cancer liver metastases, early changes in the IVIM model-derived perfusion fraction f’ and baseline ECOG score were predictive of patient outcome, and may thus help to guide treatment strategy.

Keywords: MRI, DWI, IVIM, breast cancer, selective internal radiation therapy, radioem­bolization

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]