Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice

Authors Fakharzadeh S, Sahraian MA, Hafizi M, Kalanaky S, Masoumi Z, Mahdavi M, Kamalian N, Minagar A, Nazaran MH

Received 22 March 2014

Accepted for publication 25 May 2014

Published 11 August 2014 Volume 2014:9(1) Pages 3841—3853

DOI https://doi.org/10.2147/IJN.S64630

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Saideh Fakharzadeh,1 Mohammad Ali Sahraian,2 Maryam Hafizi,1 Somayeh Kalanaky,1 Zahra Masoumi,1 Mehdi Mahdavi,1 Nasser Kamalian,3 Alireza Minagar,4 Mohammad Hassan Nazaran1

1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pathology, Medical School of Tehran University of Medical Sciences, Tehran, Iran; 4Department of Neurology, LSU Health Sciences Centre, Shreveport, LA, USA

Purpose: Currently approved therapies for multiple sclerosis (MS) at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology.
Materials and methods: MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2)-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1–7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50). Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively.
Results: The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1–7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic behavior and improved the disabling features of experimental autoimmune encephalomyelitis, which was confirmed by decreased clinical scores versus increased body mass and 100% survival probability. It did not cause any adverse effects on hemoglobin or red blood cell count. Histopathological studies showed no neural loss or lymphocyte infiltration in MSc1-treated mice, while the hepatic iron content was also normal.
Conclusion: These results demonstrate that MSc1 could be a promising beneficial novel agent and has the capacity to be evaluated in further studies.

Keywords: EAE, multiple sclerosis, MSc1, nanochelating technology, nanocomplex

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo

Kalanaky S, Hafizi M, Fakharzadeh S, Vasei M, Langroudi L, Janzamin E, Hashemi SM, Khayamzadeh M, Soleimani M, Akbari ME, Nazaran MH

Drug Design, Development and Therapy 2016, 10:59-70

Published Date: 30 December 2015

Readers of this article also read:

Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization?

Andelid K, Tengvall S, Andersson A, Levänen B, Christenson K, Jirholt P, Åhrén C, Qvarfordt I, Ekberg-Jansson A, Lindén A

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:689-702

Published Date: 27 March 2015

Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist – an initial in vitro study

Skopalik J, Polakova K, Havrdova M, Justan I, Magro M, Milde D, Knopfova L, Smarda J, Polakova H, Gabrielova E, Vianello F, Michalek J, Zboril R

International Journal of Nanomedicine 2014, 9:5355-5372

Published Date: 20 November 2014

Pulsed ultrasound enhances the delivery of nitric oxide from bubble liposomes to ex vivo porcine carotid tissue

Sutton JT, Raymond JL, Verleye MC, Pyne-Geithman GJ, Holland CK

International Journal of Nanomedicine 2014, 9:4671-4683

Published Date: 6 October 2014

Toxicology of antimicrobial nanoparticlesfor prosthetic devices

Nuñez-Anita RE, Acosta-Torres LS, Vilar-Pineda J, Martínez-Espinosa JC, de la Fuente-Hernández J, Castaño VM

International Journal of Nanomedicine 2014, 9:3999-4006

Published Date: 20 August 2014

Local delivery of minocycline-loaded PEG-PLA nanoparticles for the enhanced treatment of periodontitis in dogs

Yao WX, Xu PC, Pang ZQ, Zhao JJ, Chai ZL, Li XX, Li H, Jiang ML, Cheng HB, Zhang B, Cheng NN

International Journal of Nanomedicine 2014, 9:3963-3970

Published Date: 18 August 2014

Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

Unterweger H, Tietze R, Janko C, Zaloga J, Lyer S, Dürr S, Taccardi N, Goudouri OM, Hoppe A, Eberbeck D, Schubert DW, Boccaccini AR, Alexiou C

International Journal of Nanomedicine 2014, 9:3659-3676

Published Date: 5 August 2014

Multifunctional materials for bone cancer treatment

Marques C, Ferreira JMF, Andronescu E, Ficai D, Sonmez M, Ficai A

International Journal of Nanomedicine 2014, 9:2713-2725

Published Date: 28 May 2014

Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors

Dumont MF, Yadavilli S, Sze RW, Nazarian J, Fernandes R

International Journal of Nanomedicine 2014, 9:2581-2595

Published Date: 23 May 2014