Back to Journals » Cancer Management and Research » Volume 15

The Role of Perioperative C-Reactive Protein in Predicting the Prognosis of Epithelial Ovarian Carcinoma

Authors Pan Q, Wei M, Lu M , Xu Y, Xie X, Li X 

Received 4 September 2022

Accepted for publication 17 November 2022

Published 27 February 2023 Volume 2023:15 Pages 233—243

DOI https://doi.org/10.2147/CMAR.S385974

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Rudolph Navari



Qianqian Pan,1,2 Mingjing Wei,1,3,4 Mengyi Lu,5 Yaping Xu,6 Xing Xie,1,3,4 Xiao Li1,3,4

1Department of Gynecologic Oncology, Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, People’s Republic of China; 2Zhejiang Financial College, Hangzhou, Zhejiang, People’s Republic of China; 3Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, Zhejiang, 310006, People’s Republic of China; 4Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310058, People’s Republic of China; 5Wenzhou Central Hospital, Wenzhou, Zhejiang, People’s Republic of China; 6Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, 310003, People’s Republic of China

Correspondence: Xiao Li, Women’s Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang, People’s Republic of China, 310006, Tel +86-0571-89998891, Fax +86-0571-89998891, Email [email protected]

Background: Increasing epidemiological evidence supported that chronic inflammatory factors might be involved in the carcinogenesis and progression of various cancers. The present study tried to investigate the prognostic value of perioperative C-reactive protein (CRP) in prognosis of patients with epithelial ovarian carcinoma (EOC) from a tertiary university teaching hospital.
Methods: The cutoff value of CRP was calculated according to receiver operating characteristic (ROC) curve. Variables were compared using Chi-square test. Progress-free survival (PFS) and overall survival (OS) time were assessed by Kaplan–Meier (KM) survival analysis and Log rank test based on serum CRP level. Univariate and multivariate Cox regression analyses were applied for assessing the relationship between clinicopathological parameters and survival.
Results: Higher perioperative CRP levels (preoperative ≥ 5.15 mg/L and postoperative ≥ 72.45 mg/L) were significantly associated with serous tumor, high-grade, advanced stage, elevated preoperative CA125, suboptimal surgery, chemotherapy resistance, recurrence and death in EOC (P < 0.01). KM analysis suggested patients with elevated preoperative, postoperative and perioperative CRP had shorter survival (P < 0.01). Elevated perioperative CRP was an independent risk factor for PFS (HR 1.510, 95% CI 1.124– 2.028; P = 0.006) and OS (HR 1.580, 95% CI 1.109– 2.251; P = 0.011). Similar results were obtained for elevated preoperative CRP. Subgroup analysis further suggested that elevated perioperative CRP was also an independent risk factor for prognosis in advanced stage and serous EOC.
Conclusion: Elevated perioperative CRP was an independent risk factor for poorer prognosis of EOC, particularly in advanced stage and serous patients.

Keywords: epithelial ovarian carcinoma, perioperative C-reactive protein, prognosis

Introduction

Epithelial ovarian carcinoma (EOC) remains the leading cause of death from gynecologic tumors.1–3 Despite the improvements in surgical techniques and chemotherapeutic regimens, the 5-year survival rate for EOC is still poor.4,5 Although the exact cause of EOC has not been fully elucidated, increasing epidemiological evidence supported that chronic inflammation might be one mechanism of carcinogenesis and progression in various cancers.6–10 Thus, the evaluation of the relationships between inflammatory markers and disease progression of EOC might help guide clinical management and predict the prognosis of EOC.

C-reactive protein (CRP), released predominantly by hepatocytes upon tissue injury and inflammation, is an important and non-specific inflammatory factor.11,12 Accumulating evidences have revealed the association between CRP and the risk of various cancers.6,13–19 Peres et al6 found women with CRP concentrations >10mg/L showed a 67% increased risk of ovarian cancer compared to <1mg/L (OR=1.67, 95% CI 1.12–2.48; P=0.01). And CRP concentration >10mg/L was also positively associated with risk of mucinous (OR=9.67, 95% CI 1.10–84.80; P=0.04) and endometrioid carcinoma (OR=3.41, 95% CI 1.07–10.92; P=0.03).

In addition to the role in carcinogenesis, promising data on the prognostic role of preoperative CRP in various malignancies including EOC have been reported.11,20–24, However, the literature about EOC was limited and the sample size of most studies was small,25–29 which would prevent well-powered analyses of potential heterogeneity of the association between clinical parameters and patient prognosis. Even in Hefler’s report which recruited 623 patients with EOC, they did not analyze the relationship of perioperative (combined preoperative with postoperative) CRP and survival or conduct subgroup analysis,11 which might weaken the evidences for CRP as an independent prognostic factor of EOC. Furthermore, the cutoff value of preoperative CRP in different studies was varied.11,24 Lu et al24 found that the average preoperative CRP level in 107 Chinese patients with EOC was lower than previous reports for Caucasian cases, and deduced it might reflect ethnic variations. However, no study was reported about the role of both preoperative and postoperative (perioperative) CRP in the prognosis of EOC up to date. Therefore, the aim of the present retrospective cohort study was to comprehensively investigate the clinical relationship between perioperative serum CRP and prognosis of EOC in a relatively large sample size of Chinese population, which permitted us reduce disease heterogeneity by subgroup analysis. Hope to provide better understanding on how CRP influences prognosis and provide insights on the potential strategy of clinical management of EOC.

Materials and Methods

Patients and Data Collection

We retrospectively reviewed the records of ovarian cancer at Women’s hospital, Zhejiang University School of Medicine between 2002.01.01 and 2016.12.31. The study was approved by the Ethical Committee of women’s hospital, Zhejiang University School of Medicine (IRB-20200230-R). Owing to the retrospective character and the difficulty of recalling all enrolled patients, informed consent was specifically waived by the ethics committee. All the researcher declared to protect patient data confidentiality and compliance with the Declaration of Helsinki. The enrolled patient should meet all the following inclusion criteria: (1) initial treatment was surgery including comprehensive surgical staging or cytoreductive surgery, followed by platinum-based chemotherapy in patients with stage Ic-IV, (2) histological diagnosis of EOC confirmed by Paraffin Section, (3) preoperative blood routine showed normal white blood cell and neutrophil count, (4) available serum CRP within 3 days before operation (preoperative) or within 7 days after operation (postoperative), and (5) available follow-up data of recurrence and death. Exclusion criteria included (1) primary other cancer; (2) the increase of CRP was caused by infection, connective tissue diseases or other inflammatory conditions, judged body temperature, clinical manifestation and auxiliary examination; (3) postoperative complications developed (including postoperative infection and massive bleeding); (4) the first dose of chemotherapy was delayed more than weeks after surgery; (5) only postoperative CRP results were available. Due to the retrospective character of the present study, patients with preoperative CRP results were included for evaluating the prognostic value of preoperative CRP, while patients with both preoperative and postoperative CRP results were included for perioperative CRP.

The clinical information of each selected patient was collected from the hospital database, and survival status was followed up by phone. The variables included age at diagnosis, histological type, FIGO stage, tumor grade, preoperative and postoperative serum CRP, preoperative serum CA125, postoperative residual tumor after primary surgery, chemotherapy sensitivity and the time of recurrence, death or last follow-up. Serum CRP was detected by immunoturbidimetry as part of the clinical routine management. Chemotherapy resistance was defined as having a time with recurrence of disease ≤6 months after completion of primary chemotherapy. Overall survival (OS) time was calculated as the interval between the date of primary surgery and the date of last follow-up or death. PFS was calculated as the interval from the date of primary surgery to the time of detected recurrence or progression.

Statistical Analysis

SPSS 20.0 statistical software was used for statistical analyses. The cutoff value of preoperative and postoperative CRP was 5.15 and 72.45mg/L, respectively, which was determined by Youden Index of the ROC curve. Variables were compared by Chi-square test. Spearman correlation analysis was used to analyze the correlation between preoperative CRP and postoperative CRP. PFS and OS were assessed by Kaplan–Meier survival (KM) analysis and Log rank test based on serum CRP level. Univariate and multivariate Cox regression analyses were applied for assessing the relationship between clinicopathological parameters and survival. For all analyses, an alpha level <0.05 was considered statistically significant.

Results

The Clinical-Pathological Characteristics of EOC Patients and Their Relationship with Perioperative CRP Level

A total of 654 EOC patients who met the included and excluded criteria were included for evaluating the prognostic value of preoperative CRP. Due to the retrospective character of the present study, 172 out of 654 EOC patients did not receive postoperative CRP measurement. Thus, only 482 EOC patients were included for evaluating the prognostic value of perioperative CRP (both preoperative and postoperative CRP). The median follow-up period of 654 EOC was 49 months, ranged from 3 to 190 months. There was a positive correlation between preoperative CRP and postoperative CRP (p=0.000). However, the correlation coefficient was only 0.315, which may be affected by pathological type, grade, FIGO stage, postoperative residual lesions and other clinical parameters.

As shown in Table 1 and Supplementary Table S1, Chi-square test suggested that older age, serous carcinoma, high grade, advanced stage, higher preoperative CRP, higher preoperative CA125, higher postoperative CRP, higher perioperative CRP (both preoperative CRP ≥5.15mg/L and postoperative CRP ≥72.45mg/L), chemotherapy resistance and larger postoperative residual tumor (≥1cm) significantly correlated with poorer prognosis of EOC patients. However, subgroup analysis according to tumor stage found that histological type and tumor grade were no longer associated with the prognosis of EOC, except for the relationship between histological type and prognosis in advanced-stage subgroup from 482 EOC patients (Table 1). Most of the non-serous tumors were in early stage with good prognosis. But once they progressed into advanced stage, the mortality of non-serous EOC would be higher than that of serous tumors (Table 1).

Table 1 The Clinicopathological Characteristics of EOC Patients with Perioperative CRP

Since CRP levels were significantly associated with the prognosis of EOC, the relationship between CRP level (preoperative, postoperative and perioperative CRP, respectively) and clinical-pathological characteristics of EOC were further analyzed. The results suggested higher preoperative, postoperative and perioperative CRP levels were all significantly associated with advanced stage, postoperative residual tumor (≥1cm), chemotherapy resistance, recurrence, and death in EOC patients (all P<0.01). Higher preoperative and perioperative CRP were also associated with high-grade tumor and increased CA125 level, while postoperative and perioperative CRP levels were both significantly associated with serous tumor (P<0.05) (Table 2).

Table 2 The Relationship Between Perioperative CRP Level and Clinicopathological Characteristics of EOC Patients

Independent Risk Factors Related to Prognosis in EOC Patients

As shown in Table 3, univariate Cox regression analysis identified histological type, tumor grade, FIGO stage, preoperative CA125 level, postoperative residual tumor size and preoperative CRP level are significant prognostic factors related with PFS and OS (all p<0.001). In addition, age (p=0.013) was significantly associated with OS, but not associated with PFS. Further multivariate analysis showed that elevated perioperative CRP (both increased) was an independent risk factor for PFS (HR 1.510, 95% CI 1.124–2.028; p = 0.006) and OS (HR 1.580, 95% CI 1.109–2.251; p = 0.011), in addition to serous tumor, advanced stage and suboptimal surgery (residual tumor ≥1cm). Similar results were also validated in 654 patients with preoperative CRP results (Supplementary Table S2), except for serous tumor (elevated preoperative CRP, advanced stage and suboptimal surgery for PFS:HR=1.506, 95% CI 1.206–1.881; 6.192, 95% CI 4.094–9.366 and 1.561, 95% CI 1.228–1.985; for OS:HR=1.646, 95% CI 1.270–2.134; 9.729, 95% CI 5.537–17.093 and 1.929, 95% CI 1.465–2.539 seperately; all p = 0.000).

Table 3 Cox Regression Analysis of Factors Related to Survival in 482 Patients with Perioperative CRP

Subgroup analysis according to tumor stage suggested that no prognostic factor was associated with PFS and OS in EOC of early stage due to the good prognosis (Table 4). While for advanced stage subgroup, univariate and multivariate Cox regression analyses validated that elevated perioperative CRP and suboptimal surgery were independent risk factors for poorer prognosis (Table 4). As we know, non-serous tumor was an independent risk factor for OS in 482 patients with perioperative results and advanced-stage subgroup (Table 3–4), which was contrary to the results from 654 patients with preoperative CRP result (Table 2). Thus, subgroup analyses according to histological type were further conducted. Our results suggested perioperative CRP has no significant relationship with the prognosis in non-serous EOC. While in serous EOC, advanced stage, suboptimal surgery and elevated perioperative CRP were independent risk factors for poorer prognosis (Table 5).

Table 4 Cox Regression Analysis of Factors Related to Survival in Early and Advanced Stage Subgroup of 482 Patients

Table 5 Cox Regression Analysis of Factors Related to Survival in Serous and Non-Serous Stage Subgroup of 482 Patients

Elevated Perioperative CRP Level Was Associated with Shorter PFS and OS

As shown in Figure 1, EOC patients with elevated preoperative CRP had shorter PFS (22.0 vs 119.0 months) and OS (67.0 vs not reached) compared to preoperative CRP <5.15mg/L. EOC patients with elevated postoperative CRP also had shorter PFS (29.0 vs 119.0 months) and OS (76.0 vs not reached) compared to postoperative CRP <72.45 mg/L. Consistently, EOC patients with elevated perioperative CRP had shorter PFS (17.0 vs 119.0 months) and OS (50.0 vs not reached) compared to other patients. These results suggested that elevated perioperative CRP level (both preoperative CRP ≥5.15 mg/L and postoperative CRP ≥72.45 mg/L) is a consolidated predictive factor for poorer prognosis in EOC patients. The predicting capacity of perioperative CRP (combined with preoperative and postoperative CRP) was significantly higher than that predicted by preoperative and postoperative CRP alone.

Figure 1 The relationship between perioperative CRP level and prognosis in EOC patients (A) Kaplan–Meier curves for PFS depending on the preoperative CRP level; (B) Kaplan–Meier curves for OS depending on the preoperative CRP level; (C) Kaplan–Meier curves for PFS depending on the postoperative CRP level; (D) Kaplan–Meier curves for OS depending on the postoperative CRP level; € Kaplan–Meier curves for PFS depending on the perioperative CRP level; (F) Kaplan–Meier curves for OS depending on the perioperative CRP level.

Discussion

Although the prognosis of EOC depends on a variety of factors, clinical decision-making is still based on established histopathologic prognosticators.11 Previous studies have recognized that inflammatory-related cytokines play important regulatory roles in tumorigenesis, cancer progression and metastasis.18,19 The tumor microenvironment of EOC is rich in a variety of proinflammatory cytokine and chemokines, such as interleukin (IL)-1, IL-6, transforming growth factor-β and interferon-r, which can affect cellular communication, stimulate CRP production and are critical for tumor growth, invasion, and migration.30,31 Increasing evidences supported that inflammatory factors including CRP, were not only secreted by hepatocytes as an inflammatory response to infection, trauma and malignant tumors but also derived from tumor cells themselves.32–34 Compared with other inflammatory factors, serum CRP is a marker detected in daily clinical practice, which would be easy to perform.

The association between elevated pretreatment CRP levels and poor prognosis has been studied in different cancers including EOC.6,11,17,20–24,35–37 Knittelfelder et al validated that pre-treatment CRP level represented an independent prognostic factor for survival in patients with oral and oropharyngeal cancer, particularly in those treated with definitive chemo-radiotherapy.20 Hefler et al also reported that preoperative serum CRP could serve as clinically useful marker in 623 patients with EOC and found that the patients with CRP ≤1 mg/dl had better 5-year OS than those >1 mg/dl (82% vs 58.5%).11 While Lu et al found that CRP > 8 mg/l was related with poorer 5-year survival in 107 EOC patients.24 Furthermore, the ratio of CRP and albumin has recently been suggested as a novel independent marker of poor prognosis among EOC.28 Consistent with previous study, we found that preoperative CRP (≥5.15 mg/L) was an independent risk factor for survival in patients with EOC, in addition to the previous established prognosticators including FIGO stage and postoperative residual lesion.11 KM analysis also revealed better prognosis in lower preoperative CRP. The potential cutoff values in different studies were varied, which might be due to the different cancer types and study population.

In accordance with the predictive value of preoperative CRP level, the present study firstly revealed significant relationships between the elevated perioperative CRP and advanced tumor stage, low grade, serous carcinoma, elevated preoperative serum CA125, chemotherapy resistance and surgical residue lesions. The relationship between CRP level and tumor stage in the present study supported the hypothesis that CRP production could be from malignant cells.20 As we know, tumor stage, grade and postoperative residual tumor are the most reliable predictors for clinical prognosis of EOC.11,38,39 Thus, we speculated that perioperative CRP level could be adopted as a union factor to predict the prognosis of EOC.

As we anticipated, the levels of preoperative and postoperative serum CRP were both significantly higher in patients suffering chemoresistance, relapse and death than those in other patients. The relationship between CRP and chemoresistance suggested that increased perioperative CRP level could be used for selecting patients who would benefit from platinum-based chemotherapy. Moreover, Cox regression analysis revealed higher perioperative CRP (both preoperative ≥5.15 mg/L and postoperative ≥72.45 mg/L) was an independent risk factor for recurrence and death of EOC in all enrolled patients. Further subgroup analysis according to tumor stage and histology confirmed similar results in advanced stage and serous EOC patients. KM analysis also revealed EOC patients with elevated perioperative CRP (both increased) suffered shorter PFS and OS. As an inflammatory factor, the elevated CRP in patients with poor prognosis proposed that anti-inflammatory therapy could be a potentially effective strategy for EOC treatment.40

Conclusions

In conclusion, as a study with a relatively larger sample size, we firstly validated that elevated perioperative CRP might serve as an independent prognostic predictor for EOC with shorter PFS and OS, especially in patients with advanced stage and serous EOC. The level of perioperative CRP could be an identifier to screen the potential effective strategy for clinical management of EOC. Nevertheless, due to the retrospective character of the present study, further prospective and experimental studies are warranted to verify the prognostic value of CRP and clarify the intrinsic mechanism of CRP in tumor progression.

Abbreviations

CRP, C-reactive protein; EOC, epithelial ovarian carcinoma; KM, Kaplan–Meier; OS, overall survival; PFS, progression-free survival; MST, median survival time.

Data Sharing Statement

All data generated or analyzed during this study are included in this article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics Approval and Informed Consent

Approved by the Ethical Committee of women’s hospital, Zhejiang University School of Medicine (IRB-20200230-R).

Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Funding

This research was supported by Hangzhou Municipal Health and Family Planning Commission (0020190447).

Disclosure

The authors declare that they have no competing interests in this work.

References

1. Xian W, George S. Meeting report from the 2018 12th biennial ovarian cancer research symposium detection and prevention of ovarian cancer. Int J Gynecol Cancer. 2019;29(Suppl 2):s2–s6. doi:10.1136/ijgc-2019-000454

2. Chen Z, Guo X, Sun S, Lu C, Wang L. Serum miR-125b levels associated with epithelial ovarian cancer (EOC) development and treatment responses. Bioengineered. 2020;11(1):311–317. doi:10.1080/21655979.2020.1736755

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.21590

4. Marchetti C, Pisano C, Facchini G, et al. First-line treatment of advanced ovarian cancer: current research and perspectives. Expert Rev Anticancer Ther. 2010;10(1):47–60. doi:10.1586/era.09.167

5. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14(1):9–32. doi:10.20892/j.issn.2095-3941.2016.0084

6. Peres LC, Mallen AR, Townsend MK, et al. High levels of C-reactive protein are associated with an increased risk of ovarian cancer: results from the ovarian cancer cohort consortium. Cancer Res. 2019;79(20):5442–5451. doi:10.1158/0008-5472.CAN-19-1554

7. Pignon JP, le Maître A, Maillard E, Bourhis J; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92(1):4–14. doi:10.1016/j.radonc.2009.04.014

8. Lu L, Wu Y, Feng M, Xue X, Fan Y. A novel seven-miRNA prognostic model to predict overall survival in head and neck squamous cell carcinoma patients. Mol Med Rep. 2019;20(5):4340–4348. doi:10.3892/mmr.2019.10665

9. Groblewska M, Mroczko B, Wereszczyńska-Siemiatkowska U, et al. Serum interleukin 6 (IL-6) and C-reactive protein (CRP) levels in colorectal adenoma and cancer patients. Clin Chem Lab Med. 2008;46(10):1423–1428. doi:10.1515/CCLM.2008.278

10. Nakamura M, Bax HJ, Scotto D, et al. Immune mediator expression signatures are associated with improved outcome in ovarian carcinoma. Oncoimmunology. 2019;8(6):e1593811. doi:10.1080/2162402X.2019.1593811

11. Hefler LA, Concin N, Hofstetter G, et al. Serum C-reactive protein as independent prognostic variable in patients with ovarian cancer. Clin Cancer Res. 2008;14(3):710–714. doi:10.1158/1078-0432.CCR-07-1044

12. Thurner EM, Krenn-Pilko S, Langsenlehner U, et al. The elevated C reactive protein level is associated with poor prognosis in prostate cancer patients treated with radiotherapy. Eur J Cancer. 2015;51(5):610–619. doi:10.1016/j.ejca.2015.01.002

13. Crozier JE, McKee RF, McArdle CS, et al. Preoperative but not postoperative systemic inflammatory response correlates with survival in colorectal cancer. Br J Surg. 2007;94(8):1028–1032. doi:10.1002/bjs.5706

14. Katano A, Takahashi W, Yamashita H, et al. The impact of elevated C reactive protein level on the prognosis for oro-hypopharynx cancer patients treated with radiotherapy. Sci Rep. 2017;7(1):17805. doi:10.1038/s41598-017-18233-w

15. Graupp M, Schaffer K, Wolf A, et al. C-reactive protein is an independent prognostic marker in patients with tongue carcinoma-A retrospective study. Clin Otolaryngol. 2018;10:13102.

16. Tai SF, Chien HT, Young CK, et al. Roles of preoperative C-reactive protein are more relevant in buccal cancer than other subsites. World J Surg Oncol. 2017;15(1):47. doi:10.1186/s12957-017-1116-5

17. Khandavilli SD, Ceallaigh PO, Lloyd CJ, Whitaker R. Serum C-reactive protein as a prognostic indicator in patients with oral squamous cell carcinoma. Oral Oncol. 2009;45(10):912–914. doi:10.1016/j.oraloncology.2009.03.015

18. Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000;60(1):184–190.

19. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248(3):171–183. doi:10.1046/j.1365-2796.2000.00742.x

20. Knittelfelder O, Delago D, Jakse G, et al. The pre-treatment C-reactive protein represents a prognostic factor in patients with oral and oropharyngeal cancer treated with radiotherapy. Cancers. 2020;12(3):626. doi:10.3390/cancers12030626

21. Gockel I, Dirksen K, Messow CM, Junginger T. Significance of preoperative C-reactive protein as a parameter of the perioperative course and long-term prognosis in squamous cell carcinoma and adenocarcinoma of the oesophagus. World J Gastroenterol. 2006;12(23):3746–3750. doi:10.3748/wjg.v12.i23.3746

22. Brown DJ, Milroy R, Preston T, McMillan DC. The relationship between an inflammation-based prognostic score (Glasgow Prognostic Score) and changes in serum biochemical variables in patients with advanced lung and gastrointestinal cancer. J Clin Pathol. 2007;60(6):705–708. doi:10.1136/jcp.2005.033217

23. Polterauer S, Grimm C, Tempfer C, et al. C-reactive protein is a prognostic parameter in patients with cervical cancer. Gynecol Oncol. 2007;107(1):114–117. doi:10.1016/j.ygyno.2007.06.001

24. Lu Y, Huang S, Li P, et al. Prognostic evaluation of preoperative serum C-reactive protein concentration in patients with epithelial ovarian cancer. Exp Ther Med. 2015;9(5):2003–2007. doi:10.3892/etm.2015.2350

25. Zeng F, Wei H, Yeoh E, et al. Inflammatory markers of CRP, IL6, TNFα, and soluble TNFR2 and the risk of ovarian cancer: a meta-analysis of prospective studies. Cancer Epidemiol Biomarkers Prev. 2016;25(8):1231–1239. doi:10.1158/1055-9965.EPI-16-0120

26. Liu Y, Chen S, Zheng C, et al. The prognostic value of the preoperative C-reactive protein/albumin ratio in ovarian cancer. BMC Cancer. 2017;17(1):285. doi:10.1186/s12885-017-3220-x

27. Li J, Jiao X, Yuan Z, Qiu H, Guo R. C-reactive protein and risk of ovarian cancer: a systematic review and meta-analysis. Medicine. 2017;96(34):e7822. doi:10.1097/MD.0000000000007822

28. Ose J, Schock H, Tjønneland A, et al. Inflammatory markers and risk of epithelial ovarian cancer by tumor subtypes: the EPIC cohort. Cancer Epidemiol Biomarkers Prev. 2015;24(6):951–961. doi:10.1158/1055-9965.EPI-14-1279-T

29. Dobrzycka B, Mackowiak-Matejczyk B, Terlikowska KM, et al. Serum levels of IL-6, IL-8 and CRP as prognostic factors in epithelial ovarian cancer. Eur Cytokine Netw. 2013;24(3):106–113. doi:10.1684/ecn.2013.0340

30. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15(11):e493–e503. doi:10.1016/S1470-2045(14)70263-3

31. Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi:10.1038/nature07205

32. Nimptsch K, Aleksandrova K, Boeing H, et al. Association of CRP genetic variants with blood concentrations of C-reactive protein and colorectal cancer risk. Int J Cancer. 2015;136(5):1181–1192. doi:10.1002/ijc.29086

33. Nozoe T, Korenaga D, Futatsugi M, Saeki H, Maehara Y, Sugimachi K. Immunohistochemical expression of C-reactive protein in squamous cell carcinoma of the esophagus-significance as a tumor marker. Cancer Lett. 2003;192(1):89–95. doi:10.1016/S0304-3835(02)00630-4

34. Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands, receptors and role and role in inflammation. Clin Immunol. 2005;117(2):104–111. doi:10.1016/j.clim.2005.08.004

35. Peter F, Wittekindt C, Finkensieper M, Kiehntopf M, Guntinas-Lichius O. Prognostic impact of pretherapeutic laboratory values in head and neck cancer patients. J Cancer Res Clin Oncol. 2013;139(1):171–178. doi:10.1007/s00432-012-1320-1

36. Oluleye OW, Folsom AR, Nambi V, et al. B-type natriuretic peptide, C-reactive protein, and cause-specific mortality. Ann Epidemiol. 2013;23(2):66–73. doi:10.1016/j.annepidem.2012.11.004

37. Zuo H, Ueland PM, Ulvik A, et al. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: the Hordaland health study. Am J Epidemiol. 2016;183(4):249–258. doi:10.1093/aje/kwv242

38. Poole EM, Lee IM, Ridker PM, Buring JE, Hankinson SE, Tworoger SS. A prospective study of circulating C-reactive protein, interleukin-6, and tumor necrosis factor α receptor 2 levels and risk of ovarian cancer. Am J Epidemiol. 2013;178(8):1256–1264. doi:10.1093/aje/kwt098

39. Friedlander ML. Prognostic factors in ovarian cancer. Semin Oncol. 1998;25(3):305–314.

40. Zhang Z, Chen F, Shang L. Advances in antitumor effects of NSAIDs. Cancer Manag Res. 2018;10:4631–4640. doi:10.2147/CMAR.S175212

Creative Commons License © 2023 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.