Back to Archived Journals » ChronoPhysiology and Therapy » Volume 4

The relationship between circadian disruption and the development of metabolic syndrome and type 2 diabetes

Authors Karatsoreos I

Received 16 August 2014

Accepted for publication 16 October 2014

Published 5 December 2014 Volume 2014:4 Pages 137—145

DOI https://doi.org/10.2147/CPT.S44799

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Marc Hébert


Ilia N Karatsoreos

Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA

Abstract: Circadian (daily) rhythms are pervasive in nature, and expressed in nearly every behavioral and physiological process. In mammals, circadian rhythms are regulated by the master brain clock in the suprachiasmatic nucleus of the hypothalamus that coordinates the activity of “peripheral” oscillators throughout the brain and body. While much progress has been made in understanding the basic functioning of the circadian clock at the level of genes, molecules, and cells, our understanding of how these clocks interact with complex systems is still in its infancy. Much recent work has focused on the role of circadian clocks in the etiology of disorders as diverse as cancer, diabetes, and obesity. Given the rapid rise in obesity, and the economic costs involved in treating its associated cardiometabolic disorders such as heart disease and diabetes mellitus, understanding the development of obesity and metabolic dysregulation is crucial. Significant epidemiological data indicate a role for circadian rhythms in metabolic disorders. Shift workers have a higher incidence of obesity and diabetes, and laboratory studies in humans show misaligning sleep and the circadian clock leads to hyperinsulinemia. In animal models, body-wide “clock gene” knockout mice are prone to obesity. Further, disrupting the circadian clock by manipulating the light–dark cycle can result in metabolic dysregulation and development of obesity. At the molecular level, elegant studies have shown that targeted disruption of the genetic circadian clock in the pancreas leads to diabetes, highlighting the fact that the circadian clock is directly coupled to metabolism at the cellular level.

Keywords: glucose, metabolism, sleep, rhythms, obesity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]