Back to Journals » Open Access Animal Physiology » Volume 7

The influence of gravity on REM sleep

Authors Gonfalone A, Jha S

Received 10 January 2015

Accepted for publication 26 February 2015

Published 22 May 2015 Volume 2015:7 Pages 65—72


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Dr Peter Koulen

Alain A Gonfalone,1 Sushil K Jha2

1European Space Agency, Paris, France; 2School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Abstract: It is suggested that environmental variables, and gravity in particular, are the main determinants of sleep duration. Assuming that the rapid eye movement (REM) sleep state depends on the influence of gravity allows a better understanding of sleep across the animal world. This paper is based on numerous results already published on sleep behaviors, sleep postures, sleep durations, and the weights of many species. The difference between the sleep behavior of aquatic animals and terrestrial mammals is explained by the effect of gravity in different environments: ocean or land. Archimedes' principle applied to aquatic animals shows that their weight is minimal and this may explain the lack of REM sleep. The fact that cats or rats in unsafe positions above water do not experience REM sleep is explained by the fear of atonia, a complete relaxation of the antigravity muscles, which happens during REM sleep, completing the process of reduced sensitivity to the environment: light, sound, contact, etc. Furthermore, a very clear dependence of sleep duration on weight is obtained when plotting the data for 76 terrestrial mammalian species, showing that sleep and gravity are related. Another dependence of sleep duration, on gestation time, is presented, and this shows the difficulty of interpreting sleep and its relation to a single parameter.

Keywords: weight, atony, mammal, dream

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Negative correlation between gestation and sleep durations in mammals

Gonfalone AA

Open Access Animal Physiology 2016, 8:1-7

Published Date: 1 September 2016

Readers of this article also read:

Chagas disease: from Latin America to the world

Pinazo MJ, Gascon J

Reports in Parasitology 2015, 4:7-14

Published Date: 22 May 2015

Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway

Zhu X, Wang H, Zheng LB, Zhong ZY, Li XS, Zhao J, Kou JY, Jiang YQ, Zheng XF, Liu ZN, Li HX, Cao WW, Tian Y, Wang Y, Yang LM

International Journal of Nanomedicine 2015, 10:3719-3736

Published Date: 22 May 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010