Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 13

The impact of exposure to biomass smoke versus cigarette smoke on inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure

Authors Ocakli B, Acarturk E, Aksoy E, Gungor S, Ciyiltepe F, Oztas S, Ozmen I, Agca MC, Salturk C, Adiguzel N, Karakurt Z

Received 16 January 2018

Accepted for publication 4 March 2018

Published 18 April 2018 Volume 2018:13 Pages 1261—1267

DOI https://doi.org/10.2147/COPD.S162658

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Charles Downs

Peer reviewer comments 2

Editor who approved publication: Dr Richard Russell


Birsen Ocakli, Eylem Acarturk, Emine Aksoy, Sinem Gungor, Fulya Ciyiltepe, Selahattin Oztas, Ipek Ozmen, Meltem Coban Agca, Cuneyt Salturk, Nalan Adiguzel, Zuhal Karakurt

Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey


Purpose: The aim of this study was to evaluate the impact of exposure to biomass smoke vs cigarette smoke on serum inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure (CRF).
Patients and methods: A total of 106 patients with CRF divided into age and gender-matched groups of cigarette-smoke exposure (n=55, mean [SD] age: 71.0 [12.0] years, 92.7% were females) and biomass smoke exposure (n=51, mean [SD] age: 73.0 [11.0] years, 94.1% were females) were included in this retrospective study. Data on patient demographics (age and gender), inflammatory markers, including neutrophil-to-lymphocyte ratio, C-reactive protein, platelet/mean platelet volume ratio, arterial blood gas analysis, and pulmonary function test findings, including forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC were obtained from medical records.
Results: Carbon dioxide partial pressure levels were significantly higher in the biomass smoke exposure than in the cigarette smoke exposure group (mean [SD] 51.0 [8.0] vs 47.0 [8.0] mmHg, p=0.026, respectively). Spirometry revealed similarly low levels for FEV1 (%) (38.0 [16.0] vs 40.0 [12.0]%) and FVC (%) (45.0 [19.0] vs 39.0 [19.0]%) in cigarette-smoke and biomass smoke exposure groups, whereas biomass smoke exposure was associated with significantly higher FEV1/FVC (75.0 [14.0] vs 58.0 [12.0]%, p=0.001), lower FVC (mL) (mean [SD] 744.0 [410.0] vs 1,063.0 [592.0] mL, p=0.035) and lower percentage of patients with FEV1/FVC <70% (36.8% vs 82.0%, p<0.001) than cigarette smoke exposure.
Conclusion: Our findings indicate similarly increased inflammatory markers and abnormally low pulmonary function test findings in both biomass smoke exposure and cigarette smoke exposure groups, emphasizing the adverse effects of biomass smoke exposure on lungs to be as significant as cigarette smoke exposure. Association of biomass smoke exposure with higher likelihood of FEV1/FVC ratio of >70% and more prominent loss of vital capacity than cigarette smoke exposure seems to indicate the likelihood of at least 18 years of biomass exposure to be sufficiently high to be responsible for both obstructive and restrictive pulmonary diseases.

Keywords: biomass exposure, cigarette smoke, inflammatory markers, spirometry, chronic respiratory failure

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]