Back to Browse Journals » International Journal of Nanomedicine » Volume 7

The effects of magnetite (Fe3O4) nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3) cells and in RAW 264.7 macrophages

Authors Liu YC, Wu PC, Shieh DB, Wu SN

Received 3 December 2011

Accepted for publication 2 February 2012

Published 27 March 2012 Volume 2012:7 Pages 1687—1696

DOI http://dx.doi.org/10.2147/IJN.S28798

Review by Single-blind

Peer reviewer comments 3

Yen-Chin Liu1, Ping-Ching Wu2, Dar-Bin Shieh2–5, Sheng-Nan Wu3,6,7

1Department of Anesthesiology, 2Institute of Oral Medicine and Department of Stomatology, 3Department of Physiology, National Cheng Kung University Hospital, College of Medicine, 4Advanced Optoelectronic Technology Center, 5Center for Micro/Nano Science and Technology, National Cheng Kung University, 6Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, 7Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, Taiwan

Aims: Fe3O4 nanoparticles (NPs) have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.
Methods: We evaluated whether amine surface-modified Fe3O4 NPs have any effect on ion currents in pituitary tumor (GH3) cells via voltage clamp methods.
Results: The addition of Fe3O4 NPs decreases the amplitude of membrane electroporation-induced currents (IMEP) with a half-maximal inhibitory concentration at 45 µg/mL. Fe3O4 NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of IMEP, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.
Conclusion: The modulation of magnetic electroporation-induced currents by Fe3O4 NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.

Keywords: iron oxide, ion current, free radical

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] View Full Text [HTML] 

 

Readers of this article also read:

Monitoring cancer stem cells: insights into clinical oncology

Lin SC, Xu YC, Gan ZH, Han K, Hu HY, Yao Y, Huang MZ, Min DL

OncoTargets and Therapy 2016, 9:731-740

Published Date: 11 February 2016

BRAF mutation as a biomarker in colorectal cancer

Varghese AM, Saltz LB

Advances in Genomics and Genetics 2015, 5:347-353

Published Date: 15 October 2015

Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials

Van Heertum RL, Scarimbolo R, Ford R, Berdougo E, O’Neal M

Drug Design, Development and Therapy 2015, 9:5215-5223

Published Date: 11 September 2015

Tracking the 2015 Gastrointestinal Cancers Symposium: bridging cancer biology to clinical gastrointestinal oncology

Aprile G, Leone F, Giampieri R, Casagrande M, Marino D, Faloppi L, Cascinu S, Fasola G, Scartozzi M

OncoTargets and Therapy 2015, 8:1149-1156

Published Date: 22 May 2015

Brachytherapy in the treatment of cervical cancer: a review

Banerjee R, Kamrava M

International Journal of Women's Health 2014, 6:555-564

Published Date: 28 May 2014

Application of liposomal technologies for delivery of platinum analogs in oncology

Liu D, He C, Wang AZ, Lin W

International Journal of Nanomedicine 2013, 8:3309-3319

Published Date: 26 August 2013

Palliative care for adolescents and young adults with cancer

Rosenberg AR, Wolfe J

Clinical Oncology in Adolescents and Young Adults 2013, 3:41-48

Published Date: 24 March 2013

Multidisciplinary care in pediatric oncology

Cantrell MA, Ruble K

Journal of Multidisciplinary Healthcare 2011, 4:171-181

Published Date: 30 May 2011

Use of electronic medical records in oncology outcomes research

Gena Kanas, Libby Morimoto, Fionna Mowat, et al

ClinicoEconomics and Outcomes Research 2010, 2:1-14

Published Date: 24 February 2010