Back to Journals » International Journal of Nanomedicine » Volume 13

The effects of amine-modified single-walled carbon nanotubes on the mouse microbiota

Authors Mulvey JJ, Littmann ER, Ling L, McDevitt MR, Pamer EG, Scheinberg DA

Received 18 March 2018

Accepted for publication 12 June 2018

Published 10 September 2018 Volume 2018:13 Pages 5275—5286

DOI https://doi.org/10.2147/IJN.S168554

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Thiruganesh Ramasamy

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster


J Justin Mulvey,1,2 Eric R Littmann,3 Lilan Ling,3 Michael R McDevitt,4,5 Eric G Pamer,3,5 David A Scheinberg1,3,5

1Department of Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; 2Department of Molecular Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 3Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 4Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; 5Weill Cornell Medicine, New York, NY, USA

Background:
Amine-modified carbon nanotubes are drug delivery platforms with great potential that have not yet been applied in human clinical trials. Although modified nanotube vectors have the ability to carry multiple effectors, targeting agents, and even wrapped RNA, reports on unmodified, insoluble carbon nanotubes have highlighted inflammation in organs, including the intestine, with disruption of its resident microbiota. Disruption of the microbiota may allow for colonization by pathogenic bacteria, such as Clostridoidies difficile, stimulate immunoinfiltrates into the lamina propria or alter the absorption of therapeutics. Most proposed nanotube drugs are soluble, modified structures that are administered parenterally, and the majority of these soluble macromolecules are renally excreted; however, some are released into the bile, gaining access to the gastrointestinal tract.
Methods: Using environmentally isolated BALB/C mice in oral and intraperitoneal dosing models, high dose (3.80 or 4.25 mg/week), we administered amine-modified, soluble carbon nanotubes for 7 or 8 weeks. The general health and weight of the mice were monitored weekly, and upon killing, the diversity and content of their colonic, cecal, and ileal microbiota were assessed using shotgun 16S DNA sequencing.
Results and conclusion: We show that while oral administration at suprapharmacological doses modestly altered the α- and β-diversity of the mouse microbiome, these changes did not result in observed changes in clinical end points. Intraperitoneally-dosed mice exhibited none of the toxicities assessed.

Keywords: SWCNT, toxicity, 16S sequencing, nanopharmaceuticals

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]