Back to Journals » Research and Reports in Biology » Volume 9

The effect of light intensity and shear stress on microbial biostabilization and the community composition of natural biofilms

Authors Schmidt H, Thom M, Wieprecht S, Manz W, Gerbersdorf SU

Received 30 June 2017

Accepted for publication 11 September 2017

Published 22 February 2018 Volume 2018:9 Pages 1—16


Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 2

Editor who approved publication: Dr Muhammad Mukhtar

Holger Schmidt,1 Moritz Thom,2 Silke Wieprecht,3 Werner Manz,1 Sabine Ulrike Gerbersdorf3

1Institute for Integrated Natural Sciences, University of Koblenz-Landau, Koblenz, 2Forschungszentrum Küste, Leibniz Universität Hannover, Hannover, 3Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Stuttgart, Germany

Abstract: Biofilms constitute an important issue in microbial ecology, due to their high ecological and economic relevance, but the impact of abiotic conditions and microbial key players on the development and functionality of a natural biofilm is still little understood. This study investigated the effects of light intensity (LI) and bed shear stress (BSS) and the role of dominant microbes during the formation of natural biofilms and particularly the process microbial biostabilization. A comprehensive analysis of microbial biomass, extracellular polymeric substances produced, and the identification of dominant bacterial and algal species was correlated with assessment of biofilm adhesiveness/stability. LI and BSS impacted the biofilms in very different ways: biofilm adhesiveness significantly increased with LI and decreased with BSS. Moreover, microbial biomass and the functional organization of the bacterial community increased with LI, while the dynamics in the bacterial community increased with BSS. Most stable biofilms were dominated by sessile diatoms like Achnanthidium minutissimum or Fragilaria pararumpens and bacteria with either filamentous morphology, such as Pseudanabaena biceps, or a potential high capacity for extracellular polymeric-substance production, such as Rubrivivax gelatinosus. In contrast, microbes with high motility, such as Nitzschia fonticola, Pseudomonas fluorescens, and Caulobacter vibrioides, dominated the least adhesive biofilms. Their movement and potential antibiotic production could have had a disruptive impact on the biofilm matrix, which decreased its stability. This is the first study to unveil the link between abiotic conditions and resulting shifts in key microbial players to impact the ecosystem-service microbial biostabilization.

Keywords: microbial biostabilization, natural biofilms, abiotic factors, microbial community, mesocosm

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]