Back to Journals » OncoTargets and Therapy » Volume 8

The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

Authors Liu X, Liu X, Qiao T, Chen W, Yuan S

Received 4 January 2015

Accepted for publication 6 May 2015

Published 10 June 2015 Volume 2015:8 Pages 1399—1406

DOI https://doi.org/10.2147/OTT.S80288

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Editor who approved publication: Dr Faris Farassati


Xiaoqun Liu,1,* Xiangdong Liu,2,* Tiankui Qiao,1 Wei Chen,1 Sujuan Yuan1

1Department of Oncology, 2Department of Ophthalmology, Affiliated Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China

*These authors contributed equally to this work

Objective: The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM) kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2) on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909) in human lung adenocarcinoma A549 cells.
Methods: In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+X-ray, ATM kinase-small interfering RNA (siRNA)+CpG+X-ray (ATM-siRNA), and Chk2-siRNA+CpG+X-ray (Chk2-siRNA) groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry.
Results: Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively), though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively) and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01) when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis rate were clearly increased in the CpG+X-ray group compared with in the other groups (all P<0.05). The multi-target single-hitting model showed that the sensitization enhancement ratio calculated by mean death dose was 1.39 in CpG+X-ray group (vs 1.04 and 1.03 in the ATM-siRNA and Chk2-siRNA groups, respectively).
Conclusion: This study provides the first evidence, as far as we are aware, that CpG ODN7909 can potentiate A549 cell radiosensitivity via increasing ATM kinase-dependent phosphorylation of Chk2, suggesting activation of the ATM kinase/Chk2 signal pathway. However, the mechanism of ATM kinase activation is worth further exploration.

Keywords: ATM kinase, ODN, signal pathway, cell cycle, apoptosis, radiosensitivity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]