Back to Journals » Therapeutics and Clinical Risk Management » Volume 5

Pegylated liposomal doxorubicin in ovarian cancer

Authors Robert Strother, Daniela Matei

Published 10 August 2009 Volume 2009:5 Pages 639—650

DOI https://doi.org/10.2147/TCRM.S5148

Review by Single-blind

Peer reviewer comments 4

Robert Strother1,2, Daniela Matei1–5
1Department of Medicine, 2Indiana University Melvin and Bren Simon Cancer Center, 3Department of Obstetrics and Gynecology, 4Department of Biochemistry and Molecular Biology, 5VA Roudebush Hospital Indiana University School of Medicine, 535 Barnhill Drive, Indianapolis, IN, 46202
Abstract: The encapsulation of doxorubicin in a pegylated liposomal matrix led to a reformulated agent with a different toxicity profile and improved clinical utility. Liposomal doxorubicin is devoid of the cardiac toxicity associated with doxorubicin, but is associated with predictable muco-cutaneous toxicity. The liposomal formulation leads to improved delivery to the target tumor tissue, allowing enhanced uptake by cancer cells. These properties translate into clinical utility in recurrent ovarian cancer as demonstrated by phase II and III trials, this proven clinical efficacy leading to FDA approval in second-line therapy for ovarian cancer. New combinations with cytotoxics, in particular with carboplatin, have demonstrated an acceptable toxicity profile and clinical utility in platinum-sensitive ovarian cancer. A favorable toxicity profile renders liposomal doxorubicin an ideal partner for combination regimens with other cytotoxics, and more recently with biological agents. Such combinations are the subject of ongoing clinical trials.
Keywords: ovarian cancer, doxorubicin, liposomes, pegylated liposomal doxorubicin

Keywords: ovarian cancer, doxorubicin, liposomes, pegylated liposomal doxorubicin

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010