Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen

Authors Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL

Received 23 April 2014

Accepted for publication 4 July 2014

Published 12 November 2014 Volume 2014:9(1) Pages 5231—5246

DOI https://doi.org/10.2147/IJN.S66639

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Sandeep S Saluja,1 Douglas J Hanlon,1 Fiona A Sharp,2 Enping Hong,2 David Khalil,1 Eve Robinson,1 Robert Tigelaar,1 Tarek M Fahmy,2,3 Richard L Edelson1

1Department of Dermatology, Yale University School of Medicine, 2Department of Biomedical Engineering, Yale University, 3Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA

Abstract: Targeting antigen to dendritic cells (DCs) is a powerful and novel strategy for vaccination. Priming or loading DCs with antigen controls whether subsequent immunity will develop and hence whether effective vaccination can be achieved. The goal of our present work was to increase the potency of DC-based antitumor vaccines by overcoming inherent limitations associated with antigen stability and cross-presentation. Nanoparticles prepared from the biodegradable polymer poly(lactic-co-glycolic acid) have been extensively used in clinical settings for drug delivery and are currently the subject of intensive investigation as antigen delivery vehicles for vaccine applications. Here we describe a nanoparticulate delivery system with the ability to simultaneously carry a high density of protein-based antigen while displaying a DC targeting ligand on its surface. Utilizing a targeting motif specific for the DC-associated surface ligand DEC-205, we show that targeted nanoparticles encapsulating a MART-127–35 peptide are both internalized and cross-presented with significantly higher efficiency than isotype control-coated nanoparticles in human cells. In addition, the DEC-205-labeled nanoparticles rapidly escape from the DC endosomal compartment and do not colocalize with markers of early (EEA-1) or late endosome/lysosome (LAMP-1). This indicates that encapsulated antigens delivered by nanoparticles may have direct access to the class I cytoplasmic major histocompatibility complex loading machinery, overcoming the need for “classical” cross-presentation and facilitating heightened DC stimulation of anti-tumor CD8+ T-cells. These results indicate that this delivery system provides a flexible and versatile methodology to deliver melanoma-associated antigen to DCs, with both high efficiency and heightened potency.

Keywords: dendritic cells, DEC-205, PLGA nanoparticles, cross-presentation, melanoma-associated antigen

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Patient preference and ease of use for different coagulation factor VIII reconstitution device scenarios: a cross-sectional survey in five European countries

Cimino E, Linari S, Malerba M, Halimeh S, Biondo F, Westfeld M

Patient Preference and Adherence 2014, 8:1713-1720

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Managing hemophilia: the role of mobile technology

Khair K, Holland M

Smart Homecare Technology and TeleHealth 2014, 2:39-44

Published Date: 6 May 2014

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010