Back to Journals » Cancer Management and Research » Volume 7

Targeting autophagy in cancer management – strategies and developments

Authors Ozpolat B, Benbrook DM

Received 13 July 2014

Accepted for publication 12 December 2014

Published 11 September 2015 Volume 2015:7 Pages 291—299

DOI https://doi.org/10.2147/CMAR.S34859

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 7

Editor who approved publication: Professor Kenan Onel

Bulent Ozpolat,1 Doris M Benbrook2

1Department of Experimental Therapeutics, The University of Texas – Houston, MD Anderson Cancer Center, Houston, TX, 2Department of Obstetrics and Gynecology, University of Oklahoma HSC, Oklahoma City, OK, USA

Abstract: Autophagy is a highly regulated catabolic process involving lysosomal degradation of intracellular components, damaged organelles, misfolded proteins, and toxic aggregates, reducing oxidative stress and protecting cells from damage. The process is also induced in response to various conditions, including nutrient deprivation, metabolic stress, hypoxia, anticancer therapeutics, and radiation therapy to adapt cellular conditions for survival. Autophagy can function as a tumor suppressor mechanism in normal cells and dysregulation of this process (ie, monoallelic Beclin-1 deletion) may lead to malignant transformation and carcinogenesis. In tumors, autophagy is thought to promote tumor growth and progression by helping cells to adapt and survive in metabolically-challenged and harsh tumor microenvironments (ie, hypoxia and acidity). Recent in vitro and in vivo studies in preclinical models suggested that modulation of autophagy can be used as a therapeutic modality to enhance the efficacy of conventional therapies, including chemo and radiation therapy. Currently, more than 30 clinical trials are investigating the effects of autophagy inhibition in combination with cytotoxic chemotherapies and targeted agents in various cancers. In this review, we will discuss the role, molecular mechanism, and regulation of autophagy, while targeting this process as a novel therapeutic modality, in various cancers.

Keywords: autophagy inhibition, chemotherapy, tumor microenvironment

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Cost-effectiveness of adding rituximab to fludarabine and cyclophosphamide for treatment of chronic lymphocytic leukemia in Ukraine

Mandrik O, Corro Ramos I, Knies S, Al M, Severens JL

Cancer Management and Research 2015, 7:279-289

Published Date: 25 August 2015

The treatment landscape in thyroid cancer: a focus on cabozantinib

Weitzman SP, Cabanillas ME

Cancer Management and Research 2015, 7:265-278

Published Date: 19 August 2015

Expanding role of lenalidomide in hematologic malignancies

Ghosh N, Grunwald MR, Fasan O, Bhutani M

Cancer Management and Research 2015, 7:105-119

Published Date: 2 May 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010