Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Synthesis of liver-targeting dual-ligand modified GCGA/5-FU nanoparticles and their characteristics in vitro and in vivo

Authors Chen M, Gao X, Wang Y, Chen H, He B, Li Y, Han J, Zhang Z

Received 12 August 2013

Accepted for publication 11 September 2013

Published 6 November 2013 Volume 2013:8(1) Pages 4265—4276

DOI https://doi.org/10.2147/IJN.S52877

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Mingrong Cheng,1,2,* Xiaoyan Gao,3,* Yong Wang,4,* Houxiang Chen,5 Bing He,6 Yingchun Li,2 Jiang Han,1 Zhiping Zhang1
1Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai, People’s Republic of China; 2Department of Endoscopy, 3Department of Plastic Surgery, Pudong New Area District Zhoupu Hospital, Shanghai, People's Republic of China; 4School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People’s Republic of China; 5Zhejiang Huafon Fiber Research Institute, Zhejiang Huafon Spandex Co, Ltd, Wenzhou, People’s Republic of China; 6Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People's Republic of China

*These authors equally contributed to this research

Abstract: Nanoparticle drug delivery systems using polymers hold promise for clinical applications. We synthesized dual-ligand modified chitosan (GCGA) nanoparticles using lactic acid, glycyrrhetinic acid, and chitosan to target the liver in our previous studies. We then synthesized the GCGA/5-FU nanoparticles by conjugating 5-fluorouracil (5-FU) onto the GCGA nanomaterial, which had a mean particle size of 239.9 nm, a polydispersity index of 0.040, a zeta potential of +21.2 mV, and a drug loading of 3.90%. GCGA/5-FU nanoparticles had good slow release properties, and the release process could be divided into five phases: small burst release, gentle release, second burst release, steady release, and slow release. Inhibitory effects of GCGA/5-FU on tumor cells targeted the liver, and were time and dose dependent. GCGA nanoparticles significantly prolonged the efficacy of 5-FU on tumor cells, and alleviated the resistance of tumor cells to 5-FU. GCGA/5-FU nanoparticles were mostly concentrated in the liver, indicating that the GCGA nanoparticles were liver targeting. GCGA/5-FU nanoparticles significantly suppressed tumor growth in orthotopic liver transplantation mouse model, and improved mouse survival.

Keywords: liver cancer, chemotherapy, targeted therapy, 5-fluorouracil

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

Cheng M, Chen H, Wang Y, Xu H, He B, Han J, Zhang Z

International Journal of Nanomedicine 2014, 9:695-710

Published Date: 24 January 2014

Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells

Cheng M, Xu H, Wang Y, Chen H, He B, Gao X, Li Y, Han J, Zhang Z

Drug Design, Development and Therapy 2013, 7:1287-1299

Published Date: 25 October 2013

Readers of this article also read:

Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer

Lee HY, Mohammed KA, Kaye F, Sharma P, Moudgil BM, Clapp WL, Nasreen N

International Journal of Nanomedicine 2013, 8:4481-4494

Published Date: 21 November 2013

Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies

Zhang HZ, Sun Y, Tian A, Xue XX, Wang L, Alquhali A, Bai XZ

International Journal of Nanomedicine 2013, 8:4379-4389

Published Date: 8 November 2013

Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid)

Chen Y, Yang Z, Liu C, Wang C, Zhao S, Yang J, Sun H, Zhang Z, Kong D, Song C

International Journal of Nanomedicine 2013, 8:4315-4326

Published Date: 7 November 2013

Design of indomethacin-loaded nanoparticles: effect of polymer matrix and surfactant

Dupeyrón D, Kawakami M, Ferreira AM, Cáceres-Vélez PR, Rieumont J, Azevedo RB, Carvalho JCT

International Journal of Nanomedicine 2013, 8:3467-3477

Published Date: 13 September 2013

Biodistribution, kinetics, and biological fate of SPION microbubbles in the rat

Barrefelt A, Saghafian M, Kuiper R, Ye F, Egri G, Klickermann M, Brismar TB, Aspelin P, Muhammed M, Dähne L, Hassan M

International Journal of Nanomedicine 2013, 8:3241-3254

Published Date: 26 August 2013

Delivery system for DNAzymes using arginine-modified hydroxyapatite nanoparticles for therapeutic application in a nasopharyngeal carcinoma model

Chen Y, Yang LF, Huang SP, Li Z, Zhang L, He J, Xu ZJ, Liu LY, Cao Y, Sun LQ

International Journal of Nanomedicine 2013, 8:3107-3118

Published Date: 14 August 2013

Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion

Peng Z, Ni J, Zheng K, Shen Y, Wang X, He G, Jin S, Tang T

International Journal of Nanomedicine 2013, 8:3093-3105

Published Date: 14 August 2013

Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study

Song X, Jiang Y, Ren CJ, Sun X, Zhang Q, Gong T, Zhang ZR

International Journal of Nanomedicine 2012, 7:3689-3699

Published Date: 13 July 2012

Corrigendum

Jalil MA, Moongfangklang M, Innate K, Mitatha S, Ali J, Yupapin PP

International Journal of Nanomedicine 2012, 7:3279-3280

Published Date: 29 June 2012