Back to Journals » International Journal of Nanomedicine » Volume 11

Synthesis, characterization, and evaluation of mPEG–SN38 and mPEG–PLA–SN38 micelles for cancer therapy

Authors Xie J, Zhang X, Teng M, Yu B, Yang S, Lee R, Teng L

Received 24 December 2015

Accepted for publication 8 March 2016

Published 26 April 2016 Volume 2016:11 Pages 1677—1686


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Jing Xie,1 Xiaomin Zhang,2 Meiyu Teng,1 Bo Yu,2 Shuang Yang,1 Robert J Lee,1,3 Lesheng Teng1

1College of Life Sciences, Jilin University, Changchun, 2Hangzhou PushiKang Biotechnology Co., Ltd, Hangzhou, People’s Republic of China; 3Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA

Abstract: 7-Ethyl-10-hydroxy camptothecin (SN38) is a potent topoisomerase inhibitor and a metabolite of irinotecan. Its clinical development has been hampered by its poor solubility. To address this problem, methoxy poly(ethylene glycol)-2000 (mPEG2K)–SN38 and mPEG2K–poly(lactide) (PLA1.5K)–SN38 conjugates were prepared and then dispersed into an aqueous medium to form micelles. Physicochemical characteristics of SN38–polymer conjugate micelles, for example, micelle diameter, zeta potential, morphology, and drug content, were then evaluated. The results showed that the mean diameters of mPEG2K–SN38 and mPEG2K–PLA1.5K–SN38 micelles were ~130 and 20 nm, respectively. These two micelles had similar drug contents. mPEG2K–PLA1.5K–SN38 micelles were more homogeneous than mPEG2K–SN38 micelles. Moreover, in vitro drug release behavior of the micelles was studied by high performance liquid chromatography. SN38 release from mPEG2K–SN38 micelles was much faster than from mPEG2K–PLA1.5K–SN38 micelles. In vitro cytotoxicity, cellular uptake, and apoptosis assays of the SN38–polymer conjugate micelles were carried out on BEL-7402 human liver cancer cells. In vivo biodistribution and antitumor tumor efficacy studies were carried out in a nude mouse xenograft model derived from BEL-7402 cells. The results showed that mPEG2K–PLA1.5K–SN38 micelles were significantly more effective than mPEG2K–SN38 micelles in tumor inhibition, and the inhibitory effect of mPEG2K–PLA1.5K–SN38 micelles on tumor growth was significantly greater than that of mPEG2K–SN38 micelles (1,042 vs 1,837 mm) at 30 days. In conclusion, mPEG–PLA–SN38 is a promising anticancer agent that warrants further investigation.

Keywords: SN38, polymer conjugate, micelles, chemotherapy, liver cancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]