Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Synthesis and characterization of surface-enhanced Raman-scattered gold nanoparticles

Authors Kalmodia S, Harjwani J, Rajeswari R, Yang W, Barrow CJ, Ramaprabhu S, Krishnakumar S, Elchuri SV 

Received 4 June 2013

Accepted for publication 23 July 2013

Published 6 November 2013 Volume 2013:8(1) Pages 4327—4338

DOI https://doi.org/10.2147/IJN.S49447

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3



Video abstract presented by Sushma Kalmodia.

Views: 2096

Sushma Kalmodia,1,2 Jaidev Harjwani,3 Raguraman Rajeswari,1 Wenrong Yang,2 Colin J Barrow,2 Sundara Ramaprabhu,3 Subramanian Krishnakumar,1,* Sailaja V Elchuri1,*

1Department of Nanobiotechnology, Sankara Nethralaya, Chennai, India; 2Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia; 3Alternative Energy and Nanotechnology Lab, Indian Institute of Technology, Madras, India

*These authors contributed equally to this work

Abstract: In this paper, we report a simple, rapid, and robust method to synthesize surface-enhanced Raman-scattered gold nanoparticles (GNPs) based on green chemistry. Vitis vinifera L. extract was used to synthesize noncytotoxic Raman-active GNPs. These GNPs were characterized by ultraviolet-visible spectroscopy, dynamic light-scattering, Fourier-transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characteristic surface plasmon-resonance band at ~528 nm is indicative of spherical particles, and this was confirmed by TEM. The N–H and C–O stretches in FTIR spectroscopy indicated the presence of protein molecules. The predominant XRD plane at (111) and (200) indicated the crystalline nature and purity of GNPs. GNPs were stable in the buffers used for biological studies, and exhibited no cytotoxicity in noncancerous MIO-M1 (Müller glial) and MDA-MB-453 (breast cancer) cell lines. The GNPs exhibited Raman spectral peaks at 570, 788, and 1,102 cm-1. These new GNPs have potential applications in cancer diagnosis, therapy, and ultrasensitive biomarker detection.

Keywords: GNPs, SERS, SPR, Vitis vinifera L., stability

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.